[1]陶真鹏,徐宗恒,张宇,等.基于面向对象的云南永胜县金官盆地东缘古滑坡群识别[J].自然灾害学报,2022,31(05):244-254.[doi:10.13577/j.jnd.2022.0527]
 TAO Zhenpeng,XU Zongheng,ZHANG Yu,et al.Object-oriented identification of ancient landslide swarms on the eastern margin of the Jinguan Basin,Yongsheng County, Yunnan[J].,2022,31(05):244-254.[doi:10.13577/j.jnd.2022.0527]
点击复制

基于面向对象的云南永胜县金官盆地东缘古滑坡群识别
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年05期
页码:
244-254
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Object-oriented identification of ancient landslide swarms on the eastern margin of the Jinguan Basin,Yongsheng County, Yunnan
作者:
陶真鹏123 徐宗恒12 张宇12 牛福长4
1. 云南师范大学 地理学部, 云南 昆明 650500;
2. 云南省高原地理过程与环境变化重点实验室, 云南 昆明 650500;
3. 云南省玉龙纳西族自治县气象局, 云南 丽江 674100;
4. 北京师范大学 地理科学学部, 北京 100875
Author(s):
TAO Zhenpeng123 XU Zongheng12 ZHANG Yu12 NIU Fuchang4
1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China;
2. Key Laboratory of Plateau Geographic Processes and Environment Change of Yunnan Province, Kunming 650500, China;
3. Meteorological Bureau of Yulong Naxi Autonomous County of Yunnan Province, Lijiang 674100, China;
4. Faculty of Geographicial Science, Beijing Normal Vniversity, Beijing 100875, China
关键词:
古滑坡面向对象多尺度分割滑源区识别程海-宾川断裂带
Keywords:
ancient landslideobject-orientedmulti-scale segmentationidentification of landslide source areaChenghai-Binchuan fault zone
分类号:
P642.22;TP75;X43
DOI:
10.13577/j.jnd.2022.0527
摘要:
古滑坡在一定内外力作用下可能复活,对区域人民群众生命财产安全存在威胁,因此,古滑坡群的准确识别对其细节特征剖析、稳定性评价和隐患早期判别等工作具有重要的理论及现实意义。文中以云南永胜县金官盆地东缘山地地区为研究区,利用GF-2遥感影像数据和DEM数据,采用面向对象的分类方法,提出一种基于植被覆盖度与目视解译区分植被后,结合光谱、地形和纹理等特征识别古滑坡滑源区的方法,进而建立古滑坡滑源区识别特征规则集,最后结合野外实地调查和目视解译对识别结果进行精度分析。结果表明:(1)在程海-宾川断裂带北端的金官盆地东缘地区共计识别出古滑坡群13处,分布受程海-宾川断裂带控制明显,具有明显的下盘效应,在龙潭滑坡西北方向约4 km范围内沿断裂带连续分布。(2)正确识别的古滑坡滑源区总面积为3.09 km2,其中以龙潭滑坡最为典型,滑坡特征清晰,圈椅状地形明显,滑源区后缘高程为2 360 m,滑坡后壁崩塌堆积体坡度达30°以上。(3)结合识别结果、目视解译和野外实地调研,采用文中的方法识别古滑坡滑源区的正确识别精度高达91.54%,识别质量百分比为86.26%。本研究提出的方法可为类似古滑坡识别与古滑坡复活隐患评估等研究工作提供参考和技术支持。
Abstract:
Under certain internal and external forces,ancient landslides may be resurrected,which will be a threat to the lives and properties of the people in the region. Therefore,the accurate identification of ancient landslides group has important theoretical and practical significance for its detailed feature analysis,stability evaluation,and early identification of hidden dangers.Taking eastern margin mountain of Jinguan Basin,Yongsheng County,Yunnan Province for research area,and using GF-2 remote sensing image data and DEM data,this paper proposes a method to identify the source region of ancient landslides based on vegetation coverage and visual interpretation,combined with spectral,terrain and texture features based on object-oriented. Furthermore,the feature rule set of ancient landslides source area is established.Finally,the accuracy of the identification results were analyzed by field investigation and visual interpretation. The results show that: (1)13 ancient landslides have been identified in the eastern margin of the Jinguan Basin at the northern end of the Chenghai-Binchuan fault zone,which continuously distributed along the fault zone within a range of about 4km in the northwest of Longtan landslide. The distribution is obviously controlled by the Chenghai-Binchuan fault zone, which has obvious footwall effects.(2)The total area of the correctly identified ancient landslide source area is 3.09km2,of which the Longtan landslide is the most typical with clear landslide features and distinct arm-chair shaped topography. The main scarp of the landslide has the maximum elevation of 2 360 m,and the slope of main scarp deposit is 30°.(3)Combining the recognition results,visual interpretation and field investigation,the correct recognition accuracy of the ancient landslides source area by this method is as high as 91.54%,and the recognition quality percentage is 86.26%. The method proposed in this study canprovidereference and technical support for research work such as identification of ancient landslides and evaluation of hidden dangers of ancient landslides resurrection.

参考文献/References:

[1] 张铎,吴中海,李家存,等. 滇西北永胜-宾川地区滑坡发育的影响因子分析及其动力成因与意义探讨[J]. 自然灾害学报,2016,25(1):176-190. ZHANG Duo,WU Zhonghai,LI Jiacun,et al. Analysis of the influential factor of landslide in YongshengBinchuan region of northwest Yunnan and the exploration of its dynamic cause and significance[J]. Journal of Natural Disasters,2016,25(1):176-190.(in Chinese)
[2] SATO H P, HARP E L. Interpretation of earthquakeinduced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area,Sichuan Province,China using satellite imagery and Google Earth[J]. Landslides,2009,6(2):153-159.
[3] 彭令,徐素宁,梅军军,等. 地震滑坡高分辨率遥感影像识别[J]. 遥感学报,2017,21(4):509-518. PENG Ling,XU Suning,MEI Junjun,et al. Earthquakeinduced landslide recognition using highresolution remote sensing images[J]. Journal of Remote Sensing,2017,21(4):509-518.(in Chinese)
[4] 安立强,张景发,赵福军. 汶川地震次生灾害提取:面向对象影像分类技术的应用[J]. 自然灾害学报,2011,20(2):160-168. AN Liqiang,ZHANG Jingfa,ZHAO Fujun. Extracting secondary disaster of Wenchuan earthquake:application of objectoriented imageclassifying technology[J]. Journal of Natural Disasters,2011,20(2):160-168.(in Chinese)
[5] 李德仁,眭海刚,单杰. 论地理国情监测的技术支撑[J]. 武汉大学学报·信息科学版,2012,37(5):505-512. LI Deren,SUI Haigang,SHAN Jie. Discussion on key technologies of geographic national conditions monitoring[J]. Geomatics and Information Science of Wuhan University,2012,37(5):505-512.(in Chinese)
[6] 叶润青,邓清禄,王海庆. 基于图像分类方法滑坡识别与特征提取:以归州老城滑坡为例[J]. 工程地球物理学报, 2007, 4(6):574-577. YE Runqing,DENG Qinglu,WANG Haiqing. Landsides identification based on image classification:a case study on Guizhoulaocheng landslide in the Three Gorges Reservoir area[J]. Chinese Journal of Engineering Geophysics,2007,4(6):574-577.(in Chinese)
[7] BEHLING R,ROESSNER S,GOLOVKO D,et al. Derivation of longterm spatiotemporal landslide activity- A multisensor time series approach[J]. Remote Sensing of Environment,2016,186:88-104.
[8] 苏凤环,刘洪江,韩用顺. 汶川地震山地灾害遥感快速提取及其分布特点分析[J]. 遥感学报,2008,12(6):956-963. SU Fenghuan, LIU Hongjiang, HAN Yongshun. The extraction of mountain hazard induced by Wenchuan earthquake and analysis of its distributing characteristic[J]. Journal of Remote Sensing,2008,12(6):956-963.(in Chinese)
[9] MONDINI A C,GUZZETTI F,REICHENBACH P,et al. Semiautomatic recognition and mapping of rainfall induced shallow landslides using optical satellite images[J]. Remote Sensing of Environment,2011,115(7):1743-1757.
[10] 林齐根,邹振华,祝瑛琦,等. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用,2017,32(5):931-937. LIN Qigen,ZOU Zhenhua,ZHU Yingqi,et al. Objectoriented detection of landslides based on the spectral,spatial and morphometric properties of landslides[J]. Remote Sensing Technology and Application,2017,32(5):931-937.(in Chinese)
[11] BAATZ M, SCHAPE A.Objectoriented and multiscale image analysis in semantic networks[C]//Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing,Enschede,Netherlands, 1999:1-7.
[12] MARTHA T R,KERLE N,JETTEN V,et al. Characterising spectral,spatial and morphometric properties of landslides for semiautomatic detection using objectoriented methods[J]. Geomorphology,2010,116(1-2):24-36.
[13] LU P,STUMPF A,KERLE N,et al. Objectoriented change detection for landslide rapid mapping[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(4):701-705.
[14] 张毅,谭龙,陈冠,等. 基于面向对象分类法的高分辨率遥感滑坡信息提取[J]. 兰州大学学报(自然科学版),2014,50(5):745-750. ZHANG Yi,TAN Long,CHEN Guan,et al. Landslide information extracted from high resolution remote sensing based on the object oriented classification method[J]. Journal of Lanzhou University(Natural Sciences),2014,50(5):745-750.(in Chinese)
[15] 杨文涛,汪明,史培军,等. 基于地形因子分割、分类的面向对象滑坡快速识别方法[J]. 自然灾害学报,2015,24(4):1-6. YANG Wentao,WANG Ming,SHI Peijun,et al. Objectoriented rapid identification of landslides based on terrain factors segmentation and classification[J]. Journal of Natural Disasters,2015,24(4):1-6.(in Chinese)
[16] 丁辉,张茂省,朱卫红,等. 黄土滑坡高分辨率遥感影像识别:以陕西省延安市地区为例[J]. 西北地质,2019,52(3):231-239. DING Hui,ZHANG Maosheng,ZHU Weihong,et al. High resolution remote sensing for the identification of loess landslides:example from Yan’an city[J]. Northwestern Geology,2019,52(3):231-239.(in Chinese)
[17] 刘筱怡. 基于多元遥感技术的古滑坡识别与危险性评价研究[D]. 北京:中国地质科学院,2020. LIU Xiaoyi. Identification and Hazard Assessment of Ancient Landslides Based on MultiSource Remote Sensing Technology[D]. Beijing:Chinese Academy of Geological Sciences,2020.(in Chinese)
[18] 宿方睿,郭长宝,张学科,等. 基于面向对象分类法的川藏铁路沿线大型滑坡遥感解译[J]. 现代地质,2017,31(5):930-942. SU Fangrui,GUO Changbao,ZHANG Xueke,et al. Remote sensing interpretation of large landslides along SichuanTibet railway based on objectoriented classification method[J]. Geoscience,2017,31(5):930-942.(in Chinese)
[19] 张路路,刘召芹,刘峰,等. 基于数字高程模型的古滑坡区提取[J]. 遥感信息,2015,30(6):37-41,47. ZHANG Lulu,LIU Zhaoqin,LIU Feng,et al. Extraction of ancient landslide based on DEM[J]. Remote Sensing Information,2015,30(6):37-41,47.(in Chinese)
[20] 郭兆成,聂洪峰,杨亮,等. 鹤庆盆地东缘古滑坡遥感识别与特征研究[J]. 现代地质,2014,28(5):1068-1076. GUO Zhaocheng,NIE Hongfeng,YANG Liang,et al. Ancient landslide identification and characteristics using remote sensing along eastern edge of the Heqing Basin[J]. Geoscience,2014,28(5):1068-1076.(in Chinese)
[21] 陈剑,王全才,李波. 西藏樟木滑坡特征及成因研究[J]. 自然灾害学报,2016,25(2):103-109. CHEN Jian,WANG Quancai,LI Bo. Characteristics and cause analysis of Zhangmu landslide in Tibet[J]. Journal of Natural Disasters,2016, 25(2):103-109.(in Chinese)
[22] GUO C B,ZHANG Y S,LI X,et al. Reactivation of giant Jiangdingya ancient landslide in Zhouqu County,Gansu Province,China[J]. Landslides,2020,17(1):179-190.
[23] QI S W,ZOU Y,WU F Q,et al. A recognition and geological model of a deepseated ancient landslide at a reservoir under construction[J]. Remote Sensing,2017,9(4):383.
[24] 陆会燕,李为乐,许强,等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报·信息科学版, 2019,44(9):1342-1354. LU Huiyan,LI Weile,XU Qiang,et al. Early detection of landslides in the upstream and downstream areas of the Baige landslide,the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University,2019,44(9):1342-1354.(in Chinese)
[25] 戴可人,铁永波,许强,等. 高山峡谷区滑坡灾害隐患InSAR早期识别:以雅砻江中段为例[J]. 雷达学报,2020,9(3):554-568. DAI Keren,TIE Yongbo,XU Qiang,et al. Early identification of potential landslide geohazards in alpinecanyon terrain based on SAR interferometry-a case study of the middle section of Yalong river[J]. Journal of Radars,2020,9(3):554-568.(in Chinese)
[26] 国家地震局地质研究所. 滇西北地区活动断裂[M]. 北京:地震出版社,1990:106-109. Institute of Geology,National Earthquake Administration. Active Faults in Northwest Yunnan[M]. Beijing:Seismological Press,1990:106- 109.(in Chinese)
[27] 罗永红,王运生. 汶川地震诱发山地斜坡震动的地形放大效应[J]. 山地学报,2013,31(2):200-210. LUO Yonghong,WANG Yunsheng. Mountain slope ground motion topography amplification effect induced by Wenchuan earthquake[J]. Journal of Mountain Science,2013,31(2):200-210.(in Chinese)
[28] 蒋德明,李益敏,鲍华姝. 泸水县滑坡孕灾环境因素敏感性研究[J]. 自然灾害学报,2016,25(4):109-119. JIANG Deming,LI Yimin,BAO Huashu. Study on sensitivity in disasterpregnant environmental factors of landslide in Lushui County[J]. Journal of Natural Disasters,2016,25(4):109-119.(in Chinese)
[29] EISANK C,SMITH M,HILLIER J. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models[J]. Geomorphology(Amsterdam,Netherlands),2014,214:452-464.
[30] 马浩然. 基于多层次分割的遥感影像面向对象森林分类[D]. 北京:北京林业大学,2014:14-27. MA Haoran. ObjectBased Remote Sensing Image Classification of Forest Based on MultiLevel Segmentation[D]. Beijing:Beijing Forestry University,2014:14-27.(in Chinese)
[31] DR?U?L,TIEDE D,LEVICK S R. ESP:a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science,2010,24(6):859-871.
[32] 童立强,郭兆成. 典型滑坡遥感影像特征研究[J]. 国土资源遥感,2013,25(1):86-92. TONG Liqiang,GUO Zhaocheng. A study of remote sensing image features of typical landslides[J]. Remote Sensing for Land & Resources, 2013,25(1):86-92.(in Chinese)
[33] 李苗苗,吴炳方,颜长珍,等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学,2004,26(4):153-159. LI Miaomiao,WU Bingfang,YAN Changzhen,et al. Estimation of vegetation fraction in the upper basin of Miyun reservoir by remote sensing[J]. Resources Science,2004,26(4):153-159.(in Chinese)
[34] 丁美青,陈松岭,郭云开. 基于遥感的土地复垦植被覆盖度评价[J]. 中国土地科学,2009,23(11):72-75. DING Meiqing,CHEN Songling,GUO Yunkai. Assessment on the vegetation coverage after land reclamation based on RS[J]. China Land Science,2009,23(11):72-75.(in Chinese)
[35] 谭清梅,刘红玉,张华兵,等. 基于遥感的江苏省滨海湿地景观植被覆盖度分级研究[J]. 遥感技术与应用,2013,28(5):934-940. TAN Qingmei,LIU Hongyu,ZHANG Huabing,et al. Classification of vegetation coverage of wetland landscape based on remote sensing in the coastal area of Jiangsu Province[J]. Remote Sensing Technology and Application,2013,28(5):934-940.(in Chinese)
[36] 杜国梁,张永双,吕文明,等. 基于加权信息量模型的藏东南地区滑坡易发性评价[J]. 灾害学,2016,31(2):226-234. DU Guoliang,ZHANG Yongshuang,LV Wenming,et al. Landslide susceptibility assessment based on weighted information value model in southeast Tibet[J]. Journal of Catastrophology,2016,31(2):226-234.(in Chinese)
[37] 陈天博,胡卓玮,魏铼,等. 无人机遥感数据处理与滑坡信息提取[J]. 地球信息科学学报,2017,19(5):692-701. CHEN Tianbo,HU Zhuowei,WEI Lai,et al. Data processing and landslide information extraction based on UAV remote sensing[J]. Journal of GeoInformation Science,2017,19(5):692-701.(in Chinese)
[38] LEE D S,SHAN J,BETHEL J S. Classguided building extraction from Ikonos imagery[J]. Photogrammetric Engineering and Remote Sensing, 2003,69(2):143-150.

相似文献/References:

[1]徐磊,林剑,龙万学.面向对象的公路地质灾害监测预报数据组织[J].自然灾害学报,2012,21(04):190.
 XU Lei,LIN Jian,LONG Wanxue.Object-oriented data organization in geological disaster monitoring and prediction of highways[J].,2012,21(05):190.
[2]曾涛,杨武年,黎小东,等.面向对象的高空间分辨率遥感影像信息提取——汶川地震城市震害房屋案例研究[J].自然灾害学报,2010,19(05):086.
 ZENG Tao,YANG Wu-nian,LI Xiao-dong,et al.Information extraction of object-oriented high resolution remote sensing image: A Case Study on urban damaged buildings in Wenchuan earthquake[J].,2010,19(05):086.
[3]易文斌,唐宏,杨晋科.面向对象的灾害信息遥感提取框架及其应用[J].自然灾害学报,2009,18(05):157.
 YI Wen-bin,TANG Hong,YANG Jin-ke.Research and application of object-oriented remote sensing framework for disaster information extraction[J].,2009,18(05):157.
[4]杨文涛,汪明,史培军,等.基于地形因子分割、分类的面向对象滑坡快速识别方法[J].自然灾害学报,2015,24(04):001.[doi:10.13577/j.jnd.2015.0401]
 YANG Wentao,WANG Ming,SHI Peijun,et al.Object-oriented rapid identification of landslides based on terrain factors segmentation and classification[J].,2015,24(05):001.[doi:10.13577/j.jnd.2015.0401]
[5]王东明,许立红.破坏建筑物遥感信息提取技术——以尼泊尔8.1级地震为例[J].自然灾害学报,2016,25(03):124.[doi:10.13577/j.jnd.2016.0314]
 WANG Dongming,XU Lihong.Extraction technology of remote sensing information on building damage: a case study of Ms8.1 Nepal earthquake[J].,2016,25(05):124.[doi:10.13577/j.jnd.2016.0314]
[6]欧阳华璘,沈敬伟,周廷刚.面向对象分类方法在台风灾害信息提取中的应用研究[J].自然灾害学报,2016,25(06):009.[doi:10.13577/j.jnd.2016.0602]
 OUYANG Hualin,SHEN Jingwei,ZHOU Tinggang.Application of object-oriented classification method to typhoon disaster information extraction[J].,2016,25(05):009.[doi:10.13577/j.jnd.2016.0602]
[7]栾玉洁,郭金运,高永刚,等.基于Sentinel-1B SAR数据的2018年寿光洪水遥感监测及灾害分析[J].自然灾害学报,2021,30(02):168.[doi:10.13577/j.jnd.2021.0217]
 LUAN Yujie,GUO Jinyun,GAO Yonggang,et al.Remote sensing monitoring of flood and disaster analysis in Shouguang in 2018 from Sentinel-1B SAR data[J].,2021,30(05):168.[doi:10.13577/j.jnd.2021.0217]

备注/Memo

备注/Memo:
收稿日期:2021-6-7;改回日期:2021-10-6。
基金项目:国家自然科学基金项目(41967034)
作者简介:陶真鹏(1997-),男,硕士研究生,主要从事山地灾害与遥感应用研究.E-mail:1195819845@qq.com
通讯作者:徐宗恒(1987-),男,副教授,博士,主要从事山地灾害与地质环境研究.E-mail:553790356@qq.com
更新日期/Last Update: 1900-01-01