[1]王川,涂宽,谌华,等.Stacking InSAR和IPTA技术应用于探测宁夏隆德县滑坡隐患[J].自然灾害学报,2022,31(05):222-234.[doi:10.13577/j.jnd.2022.0525]
 WANG Chuan,TU Kuan,SHEN Hua,et al.Application of Stacking InSAR and IPTA techniques for potential lanslide detection in Longde County,Ningxia[J].,2022,31(05):222-234.[doi:10.13577/j.jnd.2022.0525]
点击复制

Stacking InSAR和IPTA技术应用于探测宁夏隆德县滑坡隐患
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年05期
页码:
222-234
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Application of Stacking InSAR and IPTA techniques for potential lanslide detection in Longde County,Ningxia
作者:
王川1 涂宽1 谌华1 耿丹1 王文龙23 李樵民23
1. 二十一世纪空间技术应用股份有限公司, 北京 100096;
2. 宁夏回族自治区遥感调查院, 宁夏 银川 750021;
3. 高分辨率对地观测系统宁夏数据与应用中心, 宁夏 银川 750021
Author(s):
WANG Chuan1 TU Kuan1 SHEN Hua1 GENG Dan1 WANG Wenlong23 LI Qiaomin23
1. Twenty First Century Aerospace Technology Co., Ltd., Beijing 100096, China;
2. Ningxia Institute of Remote Sensing Surveying and Mapping, Yinchuan 750021, China;
3. Ningxia Data and Application Center of High Resolution Earth Observation System, Yinchuan 750021, China
关键词:
隆德县滑坡隐患时序差分干涉测量技术干涉叠加相干点目标分析
Keywords:
Longde Countypotential landslideStacking InSARinterferometry point target analysis
分类号:
P694;X43
DOI:
10.13577/j.jnd.2022.0525
摘要:
宁夏回族自治区隆德县是典型的黄土丘陵区,古滑坡分布广泛,坡体受河流切割作用强,属于地质灾害中易发区。本研究采用时间跨度17个月共43景Sentinel-1卫星影像,利用干涉叠加(Stacking)和相干点目标分析技术(Interferometry Point Target Analysis,IPTA)对隆德县全境滑坡隐患进行了探测,根据已有滑坡隐患记录,Stacking技术有效探测44处,有效探测率93.6%,IPTA技术有效探测37处,有效探测率78.7%。两种InSAR测量结果的最大形变速率线性相关性强(R2=0.56),测量结果相互吻合。所识别滑坡隐患主要集中在缓坡和斜坡,形变速率和坡向对2种InSAR技术的有效探测率影响较小。同时IPTA时序测量结果反映出隆德县滑坡隐患区存在4种典型形变特征。该研究结果表明联合2种InSAR方法能够更好的对隆德县滑坡隐患进行全面探测。后续将开展InSAR技术滑坡隐患测量精度验证和IPTA测量方法的改进工作。
Abstract:
Longde County,Ningxia Hui Autonomous Region with massive fossil landslides and a strong cutting action of river to slope,is a typical loess hilly and medium-risk of geological disasters area. Based on 47 Sentinel-1data covering 17 months,this study used two InSAR methods,Stacking and IPTA to detect potential landslides in Longde County. Through comparing with the existing archives,Stacking can effectively detect 44 potentiallandslides, with an effective detection rate of 93.6%,IPTA can effectively detect 37 potential landslides,with an effective detection rate of 78.7%. The maximum deformation rates of two InSAR methods had a significant linear correlation (R2=0.56)and the measurements is coincidence for each other. Stacking and IPTA had the similar ability to identify potential landslides with different deformation rates and aspects,and the identified potential landslides were mainly distributed in gentle and moderate slopes. Meanwhile,IPTA results showed that there are four typical potential landslide characteristics in Longde county. This study proved that combining the two InSAR methods can carry out potential landslide detection well,and realized a comprehensive detection in Longde County. The next work is the conduction of the accuracy verification and the improvement of IPTA method.

参考文献/References:

[1] 李为乐,许强,陆会燕,等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报·信息科学版,2019,44(7):1043-1053. LI Weile,XU Qiang,LU Huiyan,et al. Tracking the deformation history of largescale rocky landslides and its enlightenment[J]. Geomatics and Information Science of Wuhan University,2019,44(7):1043-1053.(in Chinese)
[2] 廖明生,唐婧,王腾,等. 高分辨率SAR数据在三峡库区滑坡监测中的应用[J]. 中国科学:地球科学,2012,42(2):217-229. LIAO Mingsheng,TANG Jing,WANG Teng,et al. Application of high resolution SAR data in landslide monitoring in Three Gorges Reservoir area[J]. Scientia Sinica(Terrae),2012,42(2):217-229.(in Chinese)
[3] 涂宽,文强,谌华,等. GF-3全极化影像在地表浅覆盖区进行地质构造解译的新方法[J]. 遥感学报,2019,23(2):243-251. TU Kuan,WEN Qiang,SHEN Hua,et al. New method of structural interpretation in meadow covering based on GaoFen-3 PolSAR images[J]. Journal of Remote Sensing,2019,23(2):243-251.(in Chinese)
[4] 徐凡献. 一种滑坡堰塞坝稳定性的快速评估模型[J]. 自然灾害学报,2020,29(2):54-63. XU Fanxian. A rapid evaluation model of the stability of landslide dam[J]. Journal of Natural Disasters,2020,29(2):54-63.(in Chinese)
[5] 雷玲,周荫清,李景文,等. PSInSAR技术在伯克利山滑坡监测中的应用[J]. 北京航空航天大学学报,2012,38(9):1224-1226. LEI Ling,ZHOU Yinqing,LI Jingwen,et al. Application of PSInSAR to monitoring Berkeley landslides[J]. Journal of Beijing University of Aeronautics and Astronautics,2012,38(9):1224-1226.(in Chinese)
[6] SHEN L Z,GAO M F,YAN J W,et al. Hyperspectral estimation of soil organic matter content using different spectral preprocessing techniques and PLSR method[J]. Remote Sensing,2020,12(7):1206.
[7] 戴晨,曹念文,杨少波. 基于多源数据的夏威夷大气低层火山灾害影响分析[J]. 自然灾害学报,2019,28(5):160-171. DAI Chen,CAO Nianwen,YANG Shaobo. Analysis of the effects on lowlevel atmosphere by volcanic disasters in Hawaii based on multisource data[J]. Journal of Natural Disasters,2019,28(5):160-171.(in Chinese)
[8] 朱崇浩,张建经,马东华,等. 基于DInSARBP神经网络的震后区域滑坡危险性综合评价研究[J]. 工程地质学报,2020,28(3):530-540. ZHU Chonghao, ZHANG Jianjing, MA Donghua, et al. Comprehensive analysis on risk of landslides in postearthquake area based on DInSARBP neural networks[J]. Journal of Engineering Geology,2020,28(3):530-540.(in Chinese)
[9] GABRIEL A K,GOLDSTEIN R M,ZEBKER H A. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research,1989,94(B7):9183-9191.
[10] FERRETTI A,PRATI C,ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202-2212.
[11] FERRETTI A,PRATI C,ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.
[12] BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
[13] WERNER C,WEGMULLER U,STROZZI T,et al. Interferometric point target analysis for deformation mapping[C]//IGARSS 2003.2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings. Toulouse,France. IEEE, 2003, 4362-4364.
[14] 李治斌,党星海,蔡明祥,等. 基于PS InSAR技术的珠海市地表沉降监测与归因分析[J]. 自然灾害学报,2021,30(1):38-46. LI Zhibin,DANG Xinghai,CAI Mingxiang,et al. Subsidence monitoring and analysis of Zhuhai based on PS InSAR technology[J]. Journal of Natural Disasters,2021,30(1):38-46.(in Chinese)
[15] FERRETTI A,FUMAGALLI A,NOVALI F,et al. A new algorithm for processing interferometric datastacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(9):3460-3470.
[16] SANDWELL D T,PRICE E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research:Solid Earth,1998,103(B12):30183-30204.
[17] BECHOR N B D,ZEBKER H A. Measuring twodimensional movements using a single InSAR pair[J]. Geophysical Research Letters,2006,33(16):L16311.
[18] 何秀凤,高壮,肖儒雅,等. 多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J]. 测绘学报,2021,50(5):600-611. HE Xiufeng,GAO Zhuang,XIAO Ruya,et al. Monitoring and analysis of subsidence along LianYan railway using multitemporal Sentinel- 1A InSAR[J]. Acta Geodaetica et Cartographica Sinica,2021,50(5):600-611.(in Chinese)
[19] 任开瑀,姚鑫,赵小铭,等. 基于时序InSAR、GPS、影像偏移测量3种监测数据的滑坡失稳破坏预测研究[J]. 岩石力学与工程学报, 2020,39(S2):3421-3431. REN Kaiyu,YAO Xin,ZHAO Xiaoming,et al. Study of landslide failure prediction based on TSInSAR,GPS and image offset monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(S2):3421-3431.(in Chinese)
[20] 吕世民,吴凯,杜光波,等. 宁夏隆德县地质灾害发育特征及形成条件分析[J]. 水利与建筑工程学报,2015,13(6):42-47. LV Shimin,WU Kai,DU Guangbo,et al. Development characteristics and formation conditions of geological hazards in Longde County of Ningxia[J]. Journal of Water Resources and Architectural Engineering,2015,13(6):42-47.(in Chinese)
[21] ZEBKER H A,GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research,1986,91(B5):4993.
[22] WEGMÜLLER U,STROZZI T,TOSI L. Differential SAR interferometry for land subsidence monitoring:methodology and examples[C]//Italy:Proc. of SISOLS,2000:25-29.
[23] 曹群,陈蓓蓓,宫辉力,等. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学),2019,55(3):381-391. CAO Qun,CHEN Beibei,GONG Huili,et al. Monitoring of land subsidence in BeijingTianjinHebei Urban by combination of SBAS and IPTA[J]. Journal of Nanjing University(Natural Science),2019,55(3):381-391.(in Chinese)
[24] EINEDER M,HUBIG M,MILCKE B. Unwrapping large interferograms using the minimum cost flow algorithm[C]//IGARSS’98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings.(Cat. No.98CH36174). Seattle, WA,USA. IEEE,2002:83-87.
[25] BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
[26] 涂宽,王文龙,谌华,等. 联合升降轨InSAR与高分辨率光学遥感的滑坡隐患早期识别:以宁夏隆德为例[J]. 中国地质灾害与防治学报,2021, 32(6):72-81. TU Kuan,WANG Wenlong,SHEN Hua,et al. Early identification of hidden dangers of lanslides based on the combination of ascending and descending orbits InSAR and high spatial resolution optical remote sensing:A case study of landslides in Longde County,southern Ningxia[J]. The Chinese Journal of Geological Hazard and Control,2021, 32(6):72-81.(in Chinese)
[27] 林思美,黄华国. 基于3PGS-MTCLIM模型模拟根河林区火后植被净初级生产力恢复及其影响因子[J]. 应用生态学报,2018,29(11):3712-3722. LIN Simei,HUANG Huaguo. Simulating the postfire net primary production restoration and its affecting factors by using MTCLIM and 3PGS model in Genhe forest region,Northeast China[J]. Chinese Journal of Applied Ecology,2018,29(11):3712-3722.(in Chinese)
[28] 蒋弥,丁晓利,李志伟. 时序InSAR同质样本选取算法研究[J]. 地球物理学报,2018,61(12):4767-4776. JIANG Mi,DING Xiaoli,LI Zhiwei. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics,2018, 61(12):4767-4776.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2021-7-7;改回日期:2021-9-14。
基金项目:宁夏重点研发计划项目(2021BEG03118); 宁夏自然科学基金项目(2021AAC03455); 国家重点研发专项(2017YFC1500901)
作者简介:王川(1994-),男,助理工程师,硕士,主要从事InSAR地灾应用研究.E-mail:wangchuan@21at.com.cn
通讯作者:谌华(1979-),男,研究员,博士,主要从事干涉SAR、微波遥感器定标及SAR图像处理等研究.E-mail:shenhua@cidp.edu.cn
更新日期/Last Update: 1900-01-01