[1]张群,易靖松,张勇,等.西南山区县域单元的地质灾害风险评价——以怒江流域泸水市为例[J].自然灾害学报,2022,31(05):212-221.[doi:10.13577/j.jnd.2022.0524]
 ZHANG Qun,YI Jingsong,ZHANG Yong,et al.Geohazard risk assessment about county units in southwest mountainous areas of China: Take Lushui County of Nujiang river basin as an example[J].,2022,31(05):212-221.[doi:10.13577/j.jnd.2022.0524]
点击复制

西南山区县域单元的地质灾害风险评价——以怒江流域泸水市为例
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年05期
页码:
212-221
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Geohazard risk assessment about county units in southwest mountainous areas of China: Take Lushui County of Nujiang river basin as an example
作者:
张群1 易靖松23 张勇23 马志刚1 程英建23
1. 四川省国土空间生态修复与地质灾害防治研究院, 四川 成都 610081;
2. 中国地质科学院探矿工艺研究所, 四川 成都 611734;
3. 中国地质调查局地质灾害防治技术中心, 四川 成都 611734
Author(s):
ZHANG Qun1 YI Jingsong23 ZHANG Yong23 MA Zhigang1 CHENG Yingjian23
1. Sichuan Institute of Land and Space Ecological Resoration and Geological Hazard Prevention, Chengdu 610081, China;
2. Exploration Technology Research Institute, CGS, Chengdu 611734, China;
3. Technical Center for Geological Hazard Prevention and Control, CGS, Chengdu 611734, China
关键词:
易损性逻辑回归危险性风险评估承灾体
Keywords:
vulnerabilitylogistic regressiongeohazard probabilityrisk assessmenthazard-bearing body
分类号:
P694;X43
DOI:
10.13577/j.jnd.2022.0524
摘要:
西南山区作为中国西部地区的高山峡谷区域,区内地质灾害十分发育,具有人口、房屋多集中于斜坡坡脚分布的特点,亟需寻找一套新的易损性评价方法,针对该区域进行有效合理的风险性评价。文中选取具有典型西部山区特征的泸水市,利用地质灾害基础数据,基于GIS平台和逻辑回归理论,对模型进行评估、多元共线性诊断、拟合度检验,建立地质灾害危险性评价模型,同时考虑承灾体可能遭受的破坏状态和类型,构建了不同类型承灾体的易损性指标分级赋值表,首次提出了针对西南山区人口、房屋等承灾体分布特征的易损性评价方法,综合评价地质灾害危险性、易损性及风险性。结果表明:泸水县城北部为地质灾害极高风险区和高风险区,县城及周边大部分区域为中风险区和低风险区,与野外调查评价结果基本一致。提出的风险评估方法能有效反应县域范围内地质灾害的风险现状。
Abstract:
The southwest mountainous area is a high mountain valley area in western China, geological disasters in this area are developed,with the characteristics of population and houses concentrated in the toe of the slope. It is urgent to find a new set of vulnerability assessment methods for effective and reasonable risk assessment in this area. This paper selects Lushui City,a typical western mountainous area,and uses GIS platform and logistic regression theory to conduct model evaluation,multivariate collinearity diagnosis,and fitness test,and finally establish a geological hazard risk assessment model. Considering the damage state and type that the hazard-bearing body may suffer,the classification and assignment table of the vulnerability index of different types of hazard-bearing bodies is constructed. For the first time,a vulnerability assessment method based on the distribution characteristics of disaster-bearing bodies such as population and houses in the southwest mountainous area is proposed. The results show that the northern part of Lushui County is a high-risk area,and most of the county and its surrounding areas are medium-risk and low-risk areas,which are basically consistent with the field survey and evaluation results. This risk assessment method can effectively reflect the risk status of geological disasters within the county.

参考文献/References:

[1] 倪晓娇,南颖. 基于GIS的长白山地区地质灾害风险综合评估[J]. 自然灾害学报,2014,23(1):112-120. NI Xiaojiao,NAN Ying. Comprehensive assessment of geological disasters risk in Changbai Mountain region based on GIS[J]. Journal of Natural Disasters,2014,23(1):112-120.(in Chinese)
[2] 赵海卿,李广杰,张哲寰. 吉林省东部山区地质灾害危害性评价[J]. 吉林大学学报(地球科学版),2004,34(1):119-124. ZHAO Haiqing,LI Guangjie,ZHANG Zhehuan. Probability analysis of geological disaster in the mountainous area in east Jilin[J]. Journal of Jilin University(Earth Science Edition),2004,34(1):119-124.(in Chinese)
[3] 邵明. 滇中引水工程晋宁-江川越岭段的生态水脆弱性研究[D]. 成都:成都理工大学,2018. SHAO Ming. Study on Ecological Water Vulnerability of Jinning Jiangchuan Crossing Section in Central Yunnan Diversion Project[D]. Chengdu:Chengdu University of Technology,2018.(in Chinese)
[4] PRADHAN B,LEE S. Landslide susceptibility assessment and factor effect analysis:back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling[J]. Environmental Modelling and Software,2010,25(6):747- 759.
[5] 罗路广,裴向军,谷虎,等. 基于GIS的"8·8" 九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193-202. LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by"8·8"earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193-202.(in Chinese)
[6] 杨强,王高峰,丁伟翠,等. 多种组合模型的区域滑坡易发性及精度评价[J]. 自然灾害学报,2021,30(2):36-51. YANG Qiang,WANG Gaofeng,DING Weicui,et al. Susceptibility and accuracy evaluation of regional landsldie based on multiple hybrid models[J]. Journal of Natural Disasters,2021,30(2):36-51.(in Chinese)
[7] 王峰. 四川省南江县地质灾害易发性区划研究[D]. 成都:成都理工大学,2015. WANG Feng. Study on Geohazards Susceptibility Mapping of Nanjiang County,Sichuan Province[D]. Chengdu:Chengdu University of Technology,2015.(in Chinese)
[8] 周平华,李英成,白洁,等. 新源县汇水域单元滑坡灾害易发性评价[J]. 测绘科学,2017,42(9):82-87. ZHOU Pinghua,LI Yingcheng,BAI Jie,et al. Susceptibility assessment of landslide hazard to catchment unit in Xinyuan County[J]. Science of Surveying and Mapping,2017,42(9):82-87.(in Chinese)
[9] 王芳. 万州区滑坡灾害风险评价与管理研究[D]. 武汉:中国地质大学,2017. WANG Fang. Reserach on Landslide Risk Assessement and Management in Wanzhou District[D]. Wuhan:China University of Geosciences, 2017.(in Chinese)
[10] 张晓东. 基于遥感和GIS的宁夏盐池县地质灾风险评价研究[D]. 北京:中国地质大学, 2018. ZHANG Xiaodong. Study on Geological Disaster Risk Assessment Based on RS and GIS in Yanchi County, Ningxia[D]. Beijing:China University of Geosciences,2018.(in Chinese)
[11] 李彦宝. 基于GIS的地质灾害风险评估系统研发与应用[D]. 北京:中国地质大学,2008. LI Yanbao. Development and Application of Geological Disasters Risk Assessment System with GIS[D]. Beijing:China University of Geosciences, 2008.(in Chinese)
[12] 袁四化,王慧彦,刘晓燕,等. 基于GIS的滦县地质灾害风险区划[J]. 自然灾害学报,2013,22(6):142-150. YUAN Sihua,WANG Huiyan,LIU Xiaoyan,et al. GISbased zoning of geological disasters risk in Luanxian County[J]. Journal of Natural Disasters,2013,22(6):142-150.(in Chinese)
[13] 孟凡奇,李广杰,秦胜伍,等. 基于证据权法的泥石流危险度区划[J]. 吉林大学学报(地球科学版),2010,40(6):1380-1384. MENG Fanqi, LI Guangjie, QIN Shengwu, et al. Zoning of debris flow hazard degree with weightofevidence method[J]. Journal of Jilin University (Earth Science Edition),2010,40(6):1380-1384.(in Chinese)
[14] YILMAZ I. A case study from Koyulhisar(SivasTurkey)for landslide susceptibility mapping by artificial neural networks[J]. Bulletin of Engineering Geology and the Environment,2009,68(3):297-306.
[15] KHOSRAVI K,PHAM B T,CHAPI K,et al. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed,northern Iran[J]. The Science of the Total Environment,2018,627:744-755.
[16] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156-167. HUANG Faming,YIN Kunlong,JIANG Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156-167.(in Chinese)
[17] 刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报·信息科学版, 2018, 43(7):1085-1091. LIU Jian, LI Shulin, CHEN Tao. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1085-1091.(in Chinese)
[18] 孟庆华. 秦岭山区地质灾害风险评估方法研究——以陕西凤县为例[D]. 北京:中国地质科学院,2011. MENG Qinghua. Study on the Methods of Geohazards Risk Assessment in Qinling Mountain -A Case Study of Feng County,Baoji City, Shaanxi Province[D]. Beijing:Chinese Academy of Geological Sciences,2011.(in Chinese)
[19] 乔建平,王萌,吴彩燕. 基于概率方法的区域地质灾害风险防御工程效益评估[J]. 中国地质灾害与防治学报, 2017, 28(2):131-136, 145. QIAO Jianping,WANG Meng,WU Caiyan. Preventing engineering benefit evaluation of regional geological disaster risk based on probability method[J]. The Chinese Journal of Geological Hazard and Control,2017,28(2):131-136,145.(in Chinese)
[20] 李雪平,唐辉明. 贝叶斯信息标准在滑坡因子敏感性分析中的应用[J]. 岩土力学,2006,27(8):1393-1397. LI Xueping, TANG Huiming. Application of Bayesian information criterion to sensitivity analysis of landslide factor[J]. Rock and Soil Mechanics, 2006,27(8):1393-1397.(in Chinese)
[21] 赵忠国,张峰,郑江华. 多元自适应回归样条法的滑坡敏感性评价[J]. 武汉大学学报·信息科学版,2021,46(3):442-450. ZHAO Zhongguo,ZHANG Feng,ZHENG Jianghua. Evaluation of landslide susceptibility by multiple adaptive regression spline method[J]. Geomatics and Information Science of Wuhan University,2021,46(3):442-450.(in Chinese)

相似文献/References:

[1]林世镔,谢礼立,公茂盛.城市建筑物抗震能力评估方法[J].自然灾害学报,2011,20(04):031.
 LIN Shi-bin,XIE Li-li,GONG Mao-sheng.Methodology for estimating seismic capacity of city building[J].,2011,20(05):031.
[2]李阔,李国胜.风暴潮风险研究进展[J].自然灾害学报,2011,20(06):104.
 LI Kuo,LI Guo-sheng.Progress in research on risk of storm surge[J].,2011,20(05):104.
[3]郝敏,刘晶波.城市防震减灾规划研究综述[J].自然灾害学报,2008,17(05):040.
 HAO Min,LIU Jing-bo.Review of study on urban earthquake prevention and disaster mitigation planning[J].,2008,17(05):040.
[4]赵建华,陈汉林,杨树锋.滑坡灾害危险性评价模型比较[J].自然灾害学报,2006,15(01):128.
 ZHAO Jian-hua,CHEN Han-lin,YANG Shu-feng.Comparison of models for hazard assessment of landslide[J].,2006,15(05):128.
[5]廖丹霞,杨波,王慧彦,等.基于GIS的河北省滦县洪水灾害风险评价[J].自然灾害学报,2014,23(03):093.[doi:10.13577/j.jnd.2014.0312]
 LIAO Danxia,YANG Bo,WANG Huiyan,et al.Risk assessment of flood disaster in Luanxian County of Hebei Province based on GIS[J].,2014,23(05):093.[doi:10.13577/j.jnd.2014.0312]
[6]叶晨莹,熊峰,相敏,等.基于改进损伤模型的RC框架地震易损性研究[J].自然灾害学报,2018,27(04):119.[doi:10.13577/j.jnd.2018.0416]
 YE Chenying,XIONG Feng,XIANG Min,et al.Seismic vulnerability study of RC frame based on improved damage model[J].,2018,27(05):119.[doi:10.13577/j.jnd.2018.0416]
[7]刘如山,熊明攀,马强,等.基于仪器地震烈度的变电站高压电气设备易损性研究[J].自然灾害学报,2021,30(02):014.[doi:10.13577/j.jnd.2021.0202]
 LIU Rushan,XIONG Mingpan,MA Qiang,et al.Vulnerability study for high voltage electrical equipment in substations based on instrumental seismic intensity[J].,2021,30(05):014.[doi:10.13577/j.jnd.2021.0202]

备注/Memo

备注/Memo:
收稿日期:2021-4-29;改回日期:2021-5-18。
基金项目:国家重点研发计划项目(2018YFC1505205);怒江流域泸水—茫市段灾害地质调查(DD20190643)
作者简介:张群(1988-),女,高级工程师,硕士,主要从事地质灾害预警与防治等方面的研究.E-mail:782961232@qq.com
通讯作者:易靖松(1991-),男,工程师,硕士,主要从事地质灾害防治技术等方面的研究.E-mail:991591136@qq.com
更新日期/Last Update: 1900-01-01