[1]陈玉燕,马学宁,张正.环境温度及含水率对土体温度场影响研究[J].自然灾害学报,2022,31(05):168-174.[doi:10.13577/j.jnd.2022.0519]
 CHEN Yuyan,MA Xuening,ZHANG Zheng.Study on the effect of ambient temperature and water content on soil temperature field[J].,2022,31(05):168-174.[doi:10.13577/j.jnd.2022.0519]
点击复制

环境温度及含水率对土体温度场影响研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年05期
页码:
168-174
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Study on the effect of ambient temperature and water content on soil temperature field
作者:
陈玉燕12 马学宁1 张正3
1. 兰州交通大学 土木工程学院, 甘肃 兰州 730070;
2. 中机中联工程有限公司, 重庆 400039;
3. 甘肃省交通规划勘察设计院股份有限公司, 甘肃 兰州 730010
Author(s):
CHEN Yuyan12 MA Xuening1 ZHANG Zheng3
1. College of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. CMCU Engineering Co., Ltd, Chongqing 400039, China;
3. Gansu Province Transportation Planning, Survey & Designing Institute Co., Ltd., Lanzhou 730010, China
关键词:
冻土模型试验数值模拟冻结温度温度场水分场
Keywords:
frozen soilmodel testnumerical simulationfreezing temperaturetemperature fieldmoisture field
分类号:
TU445;TU317+.1;X43
DOI:
10.13577/j.jnd.2022.0519
摘要:
通过模型试验和数值模拟的方法,研究了环境温度和土体含水率对冻土温度场的影响。结果表明:冻结过程中土体内温度场变化只表现为降温阶段、平稳变化阶段及再降温阶段,过冷阶段表现不明显;环境温度变化对降温阶段影响较小,对平稳变化阶段和再降温阶段影响较大,环境温度越低,平稳变化阶段持续时间越长,再降温阶段同一时刻同一深度处温度越低;含水率的变化对土体内温度场的影响在降温阶段较小,对平稳变化阶段和再降温阶段影响相对较大,含水率越大,平稳变化阶段持续时间越短,再降温阶段同一时刻同一深度处温度越低;且模型试验得到的冻土温度场变化规律与数值模拟结果基本一致。研究结果可为冻土地区工程建设及对冻土的进一步研究提供参考。
Abstract:
The effect of ambient temperature and soil moisture content on frozen soil temperature field is studied by model test and numerical simulation. The results show that the temperature field in the soil only shows the cooling stage,the stable change stage and the re-cooling stage,and the performance is not obvious in the undercooling stage.The change of ambient temperature has little effect on the cooling stage,but has great effect on the stationary change stage and the re-cooling stage. The lower the ambient temperature is,the longer the duration of the stationary change stage is,and the lower the temperature at the same depth at the same time in the re-cooling stage is. The change of water content has less effect on the temperature field in the cooling stage,but has more effect on the stable change stage and the re-cooling stage. The larger the water content is,the shorter the duration of the stable change stage is,and the lower the temperature at the same depth at the same time in the re-cooling stage is. The variation law of frozen soil temperature field obtained by model test is basically consistent with the numerical simulation results. The research results can provide reference for engineering construction and further research on frozen soil in permafrost region.

参考文献/References:

[1] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社,2001. XU Xuezu,WANG Jiacheng,ZHANG Lixin. Frozen Soil Physics[M]. Beijing:Science Press,2001.(in Chinese)
[2] 童长江,管枫年. 土的冻胀与建筑物冻害防治[M]. 北京:水利电力出版社,1985. TONG Changjiang,GUAN Fengnian. Soil Frost Heaving and Prevention of Building Frost Damage[M]. Beijing:Water Resources and Electric Power Press,1985.(in Chinese)
[3] 刘炳宇,孟上九,王淼. 季冻区路基冻胀影响因素分析及权重判别[J]. 自然灾害学报,2018,27(2):68-73. LIU Bingyu,MENG Shangjiu,WANG Miao. Analysis on the influential factors and their weights of frostheaving for subgrades in seasonal frost regions[J]. Journal of Natural Disasters,2018,27(2):68-73.(in Chinese)
[4] TAYLOR G S,LUTHIN J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal,1978,15(4):548-555.
[5] LACKNER R,AMON A,LAGGER H. Artificial ground freezing of fully saturated soil:thermal problem[J]. Journal of Engineering Mechanics,2005,131(2):211-220.
[6] YANG G T,YAN H Y,CAI D G,et al. Experimental study on frost heave of highspeed railway subgrade in the seasonally frozen region[J]. Japanese Geotechnical Society Special Publication,2016,2(48):1699-1702.
[7] 赵亮,景立平,单振东. 冻土冻胀模型研究现状与进展[J]. 自然灾害学报,2020,29(4):43-52. ZHAO Liang,JING Liping,SHAN Zhendong. Research status and progress of frost heave model for frozen soil[J]. Journal of Natural Disasters, 2020,29(4):43-52.(in Chinese)
[8] 荣广秋,王淼,孟上九,等. 季冻区典型土类冻胀特性试验研究[J]. 自然灾害学报,2020,29(2):44-53. RONG Guangqiu,WANG Miao,MENG Shangjiu,et al. Experimental study on frost heaving characteristics of typical soils in seasonal frozen area[J]. Journal of Natural Disasters,2020,29(2):44-53.(in Chinese)
[9] 于琳琳,徐学燕. 人工侧向冻结条件下土的冻结试验[J]. 岩土力学,2009,30(1):231-235. YU Linlin,XU Xueyan. Test analysis of disturbed soil by lateral artificial freezing[J]. Rock and Soil Mechanics,2009,30(1):231-235.(in Chinese)
[10] 王青志,刘建坤,田亚护,等. 寒区级配碎石冻胀正交试验研究[J]. 岩土力学,2015,36(10):2825-2830,2836. WANG Qingzhi,LIU Jiankun,TIAN Yahu,et al. A study of orthogonal design tests on frostheaving characteristics of graded crushed rock[J]. Rock and Soil Mechanics,2015,36(10):2825-2830,2836.(in Chinese)
[11] 沈世鑫. 多年冻土地区的公路路基温度场研究[J]. 公路工程,2019,44(3):246-252. SHEN Shixin. Study on temperature field of highway subgrade in permafrost region[J]. Highway Engineering, 2019, 44(3):246-252.(in Chinese)
[12] 陈之祥,李顺群,夏锦红,等. 基于未冻水含量的冻土热参数计算分析[J]. 岩土力学,2017,38(S2):67-74. CHEN Zhixiang,LI Shunqun,XIA Jinhong,et al. Calculation of frozen soil thermal parameters considering unfrozen water content[J]. Rock and Soil Mechanics,2017,38(S2):67-74.(in Chinese)
[13] 姜龙,王连俊,张喜发,等. 季冻区公路路基低液限黏土法向冻胀力试验[J]. 中国公路学报,2008,21(2):23-27. JIANG Long,WANG Lianjun,ZHANG Xifa,et al. Experiment on normal frozenheave force of low liquidlimit clay of highway roadbed in seasonal frost region[J]. China Journal of Highway and Transport,2008,21(2):23-27.(in Chinese)
[14] 程涛,张东明,孙福申,等. 季冻区山岭公路隧道冻胀力学特征数值模拟研究[J]. 自然灾害学报,2018,27(4):34-40. CHENG Tao,ZHANG Dongming,SUN Fushen,et al. Numerical simulation of mechanical characteristics of mountain road tunnel under frost heaving in seasonal frozen region[J]. Journal of Natural Disasters,2018,27(4):34-40.(in Chinese)
[15] 白青波,李旭,田亚护. 路基温度场长期模拟中的地表热边界条件研究[J]. 岩土工程学报,2015,37(6):1142-1149. BAI Qingbo,LI Xu,TIAN Yahu. Upper boundary conditions in longterm thermal simulation of subgrade[J]. Chinese Journal of Geotechnical Engineering,2015,37(6):1142-1149.(in Chinese)
[16] 白青波,李旭,田亚护,等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报,2015,37(S2):131-136. BAI Qingbo,LI Xu,TIAN Yahu,et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering,2015,37(S2):131-136.(in Chinese)
[17] 毛雪松,王秉纲,胡长顺,等. 冻土路基水热迁移问题的理论模型及数值模拟[J]. 中外公路,2006,26(1):23-26. MAO Xuesong,WANG Binggang,HU Changshun,et al. Theoretical model and numerical simulation of hydrothermal migration in frozen soil subgrade[J]. Journal of China & Foreign Highway,2006,26(1):23-26.(in Chinese)

相似文献/References:

[1]张茂雨,陈联盟,杨克家,等.结构损伤模式识别与试验分析[J].自然灾害学报,2010,19(04):089.
 ZHANG Mao-yu,CHEN Lian-meng,YANG Ke-jia,et al.Pattern identification and test analysis of structural damage[J].,2010,19(05):089.
[2]肖宏彬,苗鹏.膨胀土地基中大比例模型桩浸水试验研究[J].自然灾害学报,2007,16(06):122.
 XIAO Hong-bin,MIAO Peng.Soaking test of a large-scale modelling pile embedded in expansion soil ground[J].,2007,16(05):122.
[3]陈洪凯,唐红梅,鲜学福.沟谷泥石流运动过程模型试验[J].自然灾害学报,2009,18(06):160.
 CHEN Hong-kai,TANG Hong-mei,XIAN Xue-fu.Model test of valley-shaped debris flow motion[J].,2009,18(05):160.
[4]汪云龙,轩浩,付海清.基于光栅传感技术的模型桩弯曲变形及刚度测试方法[J].自然灾害学报,2016,25(04):120.[doi:10.13577/j.jnd.2016.0415]
 WANG Yunlong,XUAN Hao,FU Haiqing.Measuring method of bending deformation and stiffness of model pile based on grating sensor technique[J].,2016,25(05):120.[doi:10.13577/j.jnd.2016.0415]
[5]李秀茹,郭恩栋,薛帅,等.富水破碎带岩溶隧道突水模型试验研究[J].自然灾害学报,2019,28(02):101.[doi:10.13577/j.jnd.2019.0211]
 LI Xiuru,GUO Endong,XUE Shuai,et al.Model test on water burst of Karst tunnel in water-rich fracture zone[J].,2019,28(05):101.[doi:10.13577/j.jnd.2019.0211]
[6]张蕾,李风丽,张瑞,等.一种地基土水平抗力系数的比例系数m的计算方法[J].自然灾害学报,2019,28(04):202.[doi:10.13577/j.jnd.2019.0422]
 ZHANG Lei,LI Fengli,ZHANG Rui,et al.A method for calculating proportional coefficient of horizontal resistance coefficient of foundation soil[J].,2019,28(05):202.[doi:10.13577/j.jnd.2019.0422]
[7]张蕾,闫吉祥,张瑞,等.扩底桩桩侧土水平抗力的分布特性[J].自然灾害学报,2020,29(01):079.[doi:10.13577/j.jnd.2020.0109]
 ZHANG Lei,YAN Jixiang,ZHANG Rui,et al.Distribution characteristics of horizontal resistance of soil on the side of belled pile[J].,2020,29(05):079.[doi:10.13577/j.jnd.2020.0109]
[8]孙义强,孟上九,王淼,等.冻土三轴试验温度精准测控新方法[J].自然灾害学报,2020,29(06):021.[doi:10.13577/j.jnd.2020.0603]
 SUN Yiqiang,MENG Shangjiu,WANG Miao,et al.Accurate measurement and control of temperature in the triaxial test for frozen soil[J].,2020,29(05):021.[doi:10.13577/j.jnd.2020.0603]
[9]任杰,王帆,王大博,等.潜流交换模型试验与影响因素研究进展[J].自然灾害学报,2021,30(05):028.[doi:10.13577/j.jnd.2021.0503]
 REN Jie,WANG Fan,WANG Dabo,et al.Review of research on model experiment and influencing factors of hyporheic exchange[J].,2021,30(05):028.[doi:10.13577/j.jnd.2021.0503]
[10]孙红月,帅飞翔,陈中轩,等.边坡俯倾孔液压流排水方法研究[J].自然灾害学报,2021,30(06):176.[doi:10.13577/j.jnd.2021.0619]
 SUN Hongyue,SHUAI Feixiang,CHEN Zhongxuan,et al.Hydraulic flow drainage method of inclined borehole[J].,2021,30(05):176.[doi:10.13577/j.jnd.2021.0619]

备注/Memo

备注/Memo:
收稿日期:2021-4-6;改回日期:2021-11-25。
基金项目:国家自然科学基金项目(41562014)
作者简介:陈玉燕(1993-),女,硕士研究生,主要从事岩土工程与基础工程方面的研究.E-mail:1376594129@qq.com
通讯作者:马学宁(1974-),男,教授,博士,主要从事基础工程的教学及科研工作.E-mail:mxn1974@163.com
更新日期/Last Update: 1900-01-01