[1]王伟,李犇,罗佳乐,等.动荷载作用历史对水泥固化钙质砂三轴力学特性影响[J].自然灾害学报,2022,31(05):158-167.[doi:10.13577/j.jnd.2022.0518]
 WANG Wei,LI Ben,LUO Jiale,et al.Influence of dynamic load history on the triaxial mechanical properties of cement stabilized calcareous sand[J].,2022,31(05):158-167.[doi:10.13577/j.jnd.2022.0518]
点击复制

动荷载作用历史对水泥固化钙质砂三轴力学特性影响
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年05期
页码:
158-167
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Influence of dynamic load history on the triaxial mechanical properties of cement stabilized calcareous sand
作者:
王伟12 李犇12 罗佳乐12 胡俊3 姜屏12 李娜12
1. 绍兴文理学院 土木工程学院, 浙江 绍兴 312000;
2. 浙江省岩石力学与地质灾害重点实验室, 浙江 绍兴 312000;
3. 海南大学 土木建筑工程学院, 海南 海口 570228
Author(s):
WANG Wei12 LI Ben12 LUO Jiale12 HU Jun3 JIANG Ping12 LI Na12
1. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China;
2. Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing 312000, China;
3. College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China
关键词:
钙质砂水泥三轴试验动荷载二元多项式模型
Keywords:
calcareous sandcementtriaxial testdynamic loadbinary polynomial model
分类号:
TU4;X43
DOI:
10.13577/j.jnd.2022.0518
摘要:
为研究动荷载对水泥钙质砂力学特性的影响,采用频率为1 Hz,振幅为1 mm,加载次数为1 000次的正弦波进行动荷载加载,对施加动荷载前后的水泥钙质砂分别进行静力三轴试验。考虑了4个水泥含量、2个龄期和4个围压的影响。试验结果表明:(1)水泥含量越大,水泥钙质砂的应变软化特性越明显,水泥增大了钙质砂的峰后脆性;(2)水泥钙质砂破坏偏应力随水泥含量、围压和龄期的增大而增大,建立了以围压和水泥含量表示的破坏偏应力二元一次多项式模型;(3)经动荷载作用后,纯钙质砂的强度有所提高,水泥钙质砂的强度出现折减,建立了以水泥含量和龄期表示的强度折减率二元二次多项式模型;(4)水泥提高了钙质砂的粘聚力,对钙质砂的内摩擦角无影响,动荷载作用对水泥钙质砂的破坏也主要体现在对水泥胶结结构的破坏导致的粘聚力下降。研究结果为水泥固化钙质砂在实际工程中应用提供参考。
Abstract:
In order to study the influence of dynamic load on the mechanical properties of cement calcareous sand (CCS),a sine wave progressive load with frequency of 1Hz,amplitude of 1mm and loading times of 1 000 times was used to carry out static triaxial tests on CCS before and after dynamic load. The effects of four cement contents, two ages and four confining pressures were considered. The results show that: (1)the larger the cement content is, the more obvious the strain softening characteristics of the cement calcareous sand are,and the post peak brittleness of the cement calcareous sand is increased.(2)The deviatoric stress increases with the increase of cement content, confining pressure and age. A quadratic polynomial model of deviatoric stress expressed by confining pressure and cement content is established.(3)After dynamic loading,the strength of pure calcareous sand is improved,while the strength of CCS is decreased. A quadratic polynomial model of strength reduction rate expressed by cement content and age is established.(4)Cement improves the cohesion of calcareous sand,but has no effect on the internal friction angle of calcareous sand. The damage of CCS under dynamic load is mainly reflected in the decrease of cohesion caused by the damage of cement cemented structure. The research results provide a reference for the application of cement stabilized calcareous sand in practical engineering.

参考文献/References:

[1] 朱长歧,陈海洋,孟庆山,等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学,2014,35(7):1831-1836. ZHU Changqi,CHEN Haiyang,MENG Qingshan,et al. Microscopic characterization of intrapore structures of calcareous sands[J]. Rock and Soil Mechanics,2014,35(7):1831-1836.(in Chinese)
[2] 张家铭,张凌,刘慧,等. 钙质砂剪切特性试验研究[J]. 岩石力学与工程学报,2008,27(S1):3010-3015. ZHANG Jiaming,ZHANG Ling,LIU Hui,et al. Experimental research on shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S1):3010-3015.(in Chinese)
[3] WEI H Z,ZHAO T,HE J Q,et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics,2018,18(2):04017153.
[4] 秦志光,袁晓铭,曹振中,等. 吹填珊瑚礁砂地基处理方法适用性与加固效果应用研究[J]. 自然灾害学报,2021,30(1):78-88. QIN Zhiguang,YUAN Xiaoming,CAO Zhenzhong,et al. Applicability and quality evaluation of foundation treatment method for backfilled coral sand site[J]. Journal of Natural Disasters,2021,30(1):78-88.(in Chinese)
[5] 李文杰,陈宜虎,范理云,等. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报,2020,34(S1):224-228. LI Wenjie,CHEN Yihu,FAN Liyun,et al. Experimental study and microstructure analysis of calcareous sand cement mortar[J]. Materials Reports,2020,34(S1):224-228.(in Chinese)
[6] 万志辉,戴国亮,龚维明,等. 海水环境下钙质砂水泥土加固体的微观侵蚀机制试验研究[J]. 岩土力学,2021,42(7):1871-1882. WAN Zhihui,DAI Guoliang,GONG Weiming,et al. Experimental study on microerosion mechanism of cement stabilized calcareous sand under seawater environment[J]. Rock and Soil Mechanics,2021,42(7):1871-1882.(in Chinese)
[7] 徐东升,黄明,黄佛光,等. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学,2020,41(5):1531-1539. XU Dongsheng,HUANG Ming,HUANG Foguang,et al. Failure behavior of cemented coral sand with different gradations[J]. Rock and Soil Mechanics,2020,41(5):1531-1539.(in Chinese)
[8] GU J X,ZENG C,LYU H B,et al. Effects of cement content and curing period on strength enhancement of cemented calcareous sand[J]. Marine Georesources & Geotechnology,2021,39(9):1083-1095.
[9] WANG W,LI J,HU J. Unconfined mechanical properties of nanoclay cement compound modified calcareous sand of the South China Sea[J]. Advances in Civil Engineering,2020,6623710.
[10] 王军,刘杰,梁桥,等. 地震影响受锚土质边坡的稳定性分析[J]. 自然灾害学报,2019,28(1):149-155. WANG Jun,LIU Jie,LIANG Qiao,et al. Analysis of stability on reinforced soil slope with anchor under seismic response[J]. Journal of Natural Disasters,2019,28(1):149-155.(in Chinese)
[11] 崔星,袁丽侠,陆彦俊. 台风诱发滑坡灾害的机理[J]. 自然灾害学报,2010,19(2):80-84. CUI Xing,YUAN Lixia,LU Yanjun. Mechanism of typhoonind uced landslide hazards[J]. Journal of Natural Disasters,2010,19(2):80-84. (in Chinese)
[12] 陶爱峰,胡国栋. 灾害性异常浪特性及研究方法综述[J]. 自然灾害学报,2008,17(1):174-179. TAO Aifeng,HU Guodong. Characteristics of disastrous rogue waves and summary of its research method[J]. Journal of Natural Disasters, 2008,17(1):174-179.(in Chinese)
[13] 毛星竹,刘建红,李同昇,等."一带一路" 沿线国家自然灾害时空分布特征分析[J]. 自然灾害学报,2018,27(1):1-8. MAO Xingzhu,LIU Jianhong,LI Tongsheng,et al. Spatiotemporal patterns of natural disasters in countries along the Belt and Road[J]. Journal of Natural Disasters,2018,27(1):1-8.(in Chinese)
[14] 谢礼立,曲哲. 论土木工程灾害及其防御[J]. 自然灾害学报,2016,25(1):1-10. XIE Lili,QU Zhe. On the civil engineering disaster and its mitigation[J]. Journal of Natural Disasters,2016,25(1):1-10.(in Chinese)
[15] 高冉,叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学,2019,40(10):3897-3908,3919. GAO Ran,YE Jianhong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea[J]. Rock and Soil Mechanics,2019,40(10):3897-3908,3919.(in Chinese)
[16] 刘鑫,李飒,刘小龙,等. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报,2019,41(9):1773-1780. LIU Xin,LI Sa,LIU Xiaolong,et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering,2019,41(9):1773-1780.(in Chinese)
[17] JAFARIAN Y,JAVDANIAN H. Dynamic properties of calcareous sand from the Persian Gulf in comparison with siliceous sands database[J]. International Journal of Civil Engineering,2020,18(2):245-249.
[18] 肖鹏,刘汉龙,张宇,等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报,2021,43(3):511-519. XIAO Peng,LIU Hanlong,ZHANG Yu,et al. Dynamic strength of temperaturecontrolled MICPtreated calcareous sand[J]. Chinese Journal of Geotechnical Engineering,2021,43(3):511-519.(in Chinese)
[19] XIAO P,LIU H L,XIAO Y,et al. Liquefaction resistance of biocemented calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2018,107:9-19.
[20] 王伟,池旭超,张芳,等. 冻融循环对滨海软土三轴应力应变曲线软化特性的影响[J]. 岩土工程学报,2013,35(S2):140-144. WANG Wei,CHI Xuchao,ZHANG Fang,et al. Effect of freezethaw circles on softening behaviors of triaxial stressstrain curve of costal soft soils[J]. Chinese Journal of Geotechnical Engineering,2013,35(S2):140-144.(in Chinese)
[21] 纪文栋,张宇亭,裴文斌,等. 钙质珊瑚砂液化特性的动三轴试验研究[J]. 水道港口,2018,39(1):101-106. JI Wendong,ZHANG Yuting,PEI Wenbin,et al. Study on the coral sand liquefaction characteristics by dynamic triaxial test[J]. Journal of Waterway and Harbor,2018,39(1):101-106.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2021-7-6;改回日期:2021-10-1。
基金项目:国家自然科学基金项目(41772311,51968019)
作者简介:王伟(1977-),男,教授,博士,主要从事软土加固减灾技术研究.E-mail:wellswang@usx.edu.cn
通讯作者:李娜(1978-),女,副教授,硕士,主要从事软土地基加固与处理研究.E-mail:lina@usx.edu.cn
更新日期/Last Update: 1900-01-01