[1]段存坤,张春巍.层间隔震结构摩擦摆控制系统参数影响分析[J].自然灾害学报,2022,31(05):090-103.[doi:10.13577/j.jnd.2022.0511]
 DUAN Cunkun,ZHANG Chunwei.Analysis of parameter influence on friction pendulum control system of inter-story isolation structure[J].,2022,31(05):090-103.[doi:10.13577/j.jnd.2022.0511]
点击复制

层间隔震结构摩擦摆控制系统参数影响分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年05期
页码:
090-103
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Analysis of parameter influence on friction pendulum control system of inter-story isolation structure
作者:
段存坤1 张春巍12
1. 青岛理工大学 土木工程学院, 山东 青岛 266033;
2. 沈阳工业大学 多学科基础设施工程研究中心, 辽宁 沈阳 110870
Author(s):
DUAN Cunkun1 ZHANG Chunwei12
1. College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;
2. Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang 110870, China
关键词:
摩擦摆支座摩擦系数初始刚度摆动刚度层间隔震控制
Keywords:
friction pendulum bearingsfriction coefficientinitial stiffnessrestoring stiffnessinter-story isolation control
分类号:
TU355
DOI:
10.13577/j.jnd.2022.0511
摘要:
文中研究了基于摩擦摆支座的结构层间隔震控制问题,分别建立了摩擦摆支座及层间隔震结构的有限元模型,对基于摩擦摆支座的结构层间隔震控制系统进行了参数影响分析以掌握其规律。以摩擦摆支座的摩擦系数和滑道半径为变量,研究了该控制系统参数对结构顶层加速度和隔震层变形的影响,探讨了隔震层位置的影响规律。以结构控制第三阶段Benchmark模型为背景,建立并制作了结构和隔震支座的有限元模型和实验模型。有限元分析结果表明,增大摩擦系数改变了摩擦摆支座初始刚度,顶层加速度衰减率随着摩擦系数的增大而增大,摩擦摆支座上下板之间相对位移随之减小,隔震层变形得到有效控制;滑道半径的增加降低了摩擦摆支座的摆动刚度,顶层加速度衰减率随着滑道半径的增大而增大,摩擦摆支座相对位移也随之增大;隔震层位置的变化影响结构整体动力特性,体现在振型模态参与质量系数的比例发生变化,摩擦摆层间隔震控制通过调整每个振型的贡献率来降低高阶振型的影响。
Abstract:
In this paper,the control problem of inter-story isolation based on friction pendulum system(FPS)is studied,and the finite element models of FPS and inter-story isolation structure are established respectively. The influence of parameters on the control system of inter-story isolation based on FPS is analyzed to grasp its laws. Taking friction coefficient and slideway radius of FPS as variables,the influence of the parameters of the control system on the acceleration and deformation of isolation layer on the top of the structure is studied,and the influence law of isolation floor position is discussed. Based on the third stage 9-layer benchmark model,the finite element model and experimental model of the structure and isolation bearing are established and manufactured. The finite element analysis results show that increasing the friction coefficient changes the initial stiffness of the FPS,the top acceleration attenuation rate increases with the increase of the friction coefficient,and the FPS displacement decreases. The deformation of the isolation layer is effectively controlled. The increase of the slideway radius reduces the restoring stiffness of the FPS;the attenuation rate of the top acceleration increases with the increase of the slideway radius,and the FPS displacement increases. The change of the position of the isolation layer affects the overall dynamic characteristics of the structure,which is reflected in the change of the proportion of the mode participation mass coefficient. The FPS inter-story isolation technology reduces the influence of the high-order mode by adjusting the contribution rate of each mode.

参考文献/References:

[1] ZAYAS V A,LOW S S,MAHIN S A. A simple pendulum technique for achieving seismic isolation[J]. Earthquake Spectra,1990,6(2):317-333.
[2] MOKHA A,CONSTANTINOU M,REINHORN A,et al. Experimental study of frictionpendulum isolation system[J]. Journal of Structural Engineering,1991,117(4):1201-1217.
[3] CALVI P M,CALVI G M. Historical development of frictionbased seismic isolation systems[J]. Soil Dynamics & Earthquake Engineering, 2018,106:14-30.
[4] Fenz Roussis P C,Constantinou M C. Experimental and analytical studies of structures seismically isolated with an uplift restraining friction pendulum system[J]. Earthquake Engineering and Structural Dynamics,2006,35(5):595-611.
[5] CARDONE M D,CROATTO F. Frictional behavior of SteelPTFE interfaces for seismic isolation[J]. Bulletin of Earthquake Engineering, 2005,3(1):75-99.
[6] CALVI G M,CALVI P M,MORATTI M. Seismic isolation of buildings using devices based on sliding between surfaces with variable friction coefficient[J]. Innovative Infrastructure Solutions,2017,2(1):39.
[7] 周福霖, 张颖, 谭平. 层间隔震体系的理论研究[J]. 土木工程学报,2009,42(8):1-8. ZHOU Fulin,ZHANG Ying,TAN Ping. Theoretical study on story isolation system[J]. China Civil Engineering Journal,2009,42(8):1-8. (in Chinese)
[8] 张颖, 谭平, 周福霖. 分段隔震新体系的参数设计与减震性能研究[J]. 土木工程学报,2010,43(S1):270-275. ZHANG Ying,TAN Ping,ZHOU Fulin. Study on seismic reduction performance and parameter design of newly segmented isolation system[J]. China Civil Engineering Journal,2010,43(S1):270-275.(in Chinese)
[9] 徐家云,雷静雅. 小高层建筑中屋顶花园TMD的振动控制作用[J]. 自然灾害学报,2005, 14(4):154-157. XU Jiayun,LEI Jingya. Vibrantion control effect of roof garden as a TMD in midrise building[J]. Journal of Natural Disasters,2005, 14(4):154-157.(in Chinese)
[10] ZHOU Q,SINGH M P,HUANG X Y. Model reduction and optimal parameters of midstory isolation systems[J]. Engineering Structures, 2016,124:36-48.
[11] BOLVARDI V,PEI S,VAN D,et al. Direct displacement design of tall cross laminated timber platform buildings with interstory isolation[J]. Engineering Structures,2018,167:740-749.
[12] 向越, 谭平, 贺辉, 兰李. 变摩擦多级FPS-TMD系统减震性能研究[J]. 自然灾害学报,2020,29(4):53-61. XIANG Yue,TAN Ping,HE Hui,LAN Li. Seismic performance of multistage FPS-TMD system with variable friction coefficient[J]. Journal of Natural Disasters,2020,29(4):53-61.(in Chinese)
[13] 荣强, 张兴, 吴东. 近断层地震动作用下摩擦摆隔震体系的参数研究[J]. 工程抗震与加固改造,2017,39(2):85-92. RONG Qiang,ZHANG Xing,WU Dong. Parametric research of friction pendulum isolation system subjected to nearfault ground motions[J]. Earthquake Resistant Engineering and Retrofitting,2017,39(2):85-92.(in Chinese)
[14] 薛素铎,赵伟,李雄彦,等. 摩擦摆支座在单层球面网壳结构隔震控制中的参数分析[J]. 北京工业大学学报, 2009, 35(7):933-938. XUE Suduo,ZHAO Wei,LI Xiongyan,et al. Parameter analysis of singlelayer spherical lattice shell with FPS[J]. Journal of Beijing University of Technology,2009,35(7):933-938.(in Chinese)
[15] 龚健,周云. 摩擦摆隔震技术研究和应用的回顾与前瞻(Ⅰ)——摩擦摆隔震支座的类型与性能[J]. 工程抗震与加固改造,2010,32(3):1-10. GONG Jian, ZHOU Yun. State of the art and prospect of the research and application of friction pendulum isolation technology(I):Types and performance of friction pendulum bearings[J]. Earthquake Resistant Engineering and Retrofitting,2010,32(3):1-10.(in Chinese)
[16] 李晓东,赵健,王文渊. 基于改进型SMA-三重摩擦摆隔震支座的层间隔震结构地震响应分析[J]. 四川建筑科学研究,2017, 43(3):90-94. LI Xiaodong,ZHAO Jian,WANG Wenyuan. Seismic response of story isolation structure with modified SMAtriple friction pendulum isolation bearing[J]. Sichuan Building Science,2017, 43(3):90-94.(in Chinese)
[17] JANGID R S. Optimum friction pendulum system for nearfault motions[J]. Engineering Structures,2005,27(3):349-359.
[18] ZHOU Y,CHEN P. Shaking table tests and numerical studies on the effect of viscous dampers on an isolated RC building by friction pendulum bearings[J]. Soil Dynamics and Earthquake Engineering,2017,100:330-344.
[19] LANDI L, GRAZI G, DIOTALLEVI P P. Comparison of different models for friction pendulum isolators in structures subjected to horizontal and vertical ground motions[J]. Soil Dynamics and Earthquake Engineering,2016,81(1):75-83.
[20] JR B,DYKE S J,DEOSKAR H S. Benchmark problems in structural control:Part IActive Mass Driver system[J]. Earthquake Engineering & Structural Dynamics,1997,27(11):1127-1139.

备注/Memo

备注/Memo:
收稿日期:2021-4-22;改回日期:2021-9-5。
基金项目:国家重点研发计划项目(2019YFE0112400)
作者简介:段存坤(1991-),男,博士研究生,主要从事结构振动控制研究.E-mail:duancunkun@qut.edu.cn
通讯作者:张春巍(1977-),男,教授、博士,主要从事土木工程结构与防灾减灾研究.E-mail:zhangchunwei@qut.edu.cn
更新日期/Last Update: 1900-01-01