[1]夏雪,金勇根,段和平,等.江西省雷灾灾情和闪电活动时空分布特征及灾情等级划分研究[J].自然灾害学报,2022,31(02):252-260.[doi:10.13577/j.jnd.2022.0227]
 XIA Xue,JIN Yonggen,DUAN Heping,et al.Research on the characteristics of lightning disasters and lightning activities spatial and temporal distribution and the classification of disaster levels in Jiangxi Province[J].,2022,31(02):252-260.[doi:10.13577/j.jnd.2022.0227]
点击复制

江西省雷灾灾情和闪电活动时空分布特征及灾情等级划分研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年02期
页码:
252-260
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Research on the characteristics of lightning disasters and lightning activities spatial and temporal distribution and the classification of disaster levels in Jiangxi Province
作者:
夏雪 金勇根 段和平 周洁晨
江西省气象灾害防御技术中心, 江西 南昌 330096
Author(s):
XIA Xue JIN Yonggen DUAN Heping ZHOU Jiechen
Jiangxi Provincial Meteorological Disaster Prevention Technology Center, Nanchang 330096, China
关键词:
雷灾灾情灰色定权聚类分析法ArcGIS江西省闪电活动
Keywords:
lightning disastergrey fixed-weight cluster analysis methodArcGISJiangxi Provincelightning activity
分类号:
S429;X43
DOI:
10.13577/j.jnd.2022.0227
摘要:
基于江西省雷电灾害数据和闪电监测数据,对比分析雷电灾害和闪电活动的时空分布特征,利用ArcGIS软件,绘制江西省各地市的雷击事故分布图和年平均雷击密度分布图;采用灰色定权聚类分析法,评估各地市的雷灾灾情等级和雷灾灾害风险等级,绘制江西省各地市的雷电灾害等级划分图和雷灾灾害风险等级划分图,对比分析评估结果。研究表明,雷击事故和闪电活动的时空分布特征有明显的一致性,集中发生时段是6~8月份、16时;雷击密度高值区和年平均雷击密度高值区有一定的对应关系,赣北地区雷击事故密度要高于赣南地区,农田、建(构)筑物和野外(空旷处)发生雷击伤亡事故最多,农村发生的雷击伤亡事故占总雷击事故数的85.16%。对比分析各地市雷灾灾情等级和雷灾灾害风险等级的评估结果可知,二者的匹配度达到45%,重灾区和高风险地区不相匹配,中灾区、中风险地区和少灾区、低风险地区较匹配,基于雷灾数据分析得到的灾情等级要比基于闪电监测数据得到的雷灾灾害风险等级要低一些,在实际防雷减灾工作中,可结合考虑二者的分布特征,采取相应减灾措施。
Abstract:
Based on the lightning disaster data and lightning monitoring data in Jiangxi Province,the temporal and spatial distribution characteristics of lightning disasters and lightning activities are comparatively analyzed. The lightning accident distribution maps and annual average lightning strike density distribution maps in various cities are drawn by ArcGIS software.Besides,the lightning disaster level and lightning disaster risk level of each city are evaluated by means of gray fixed weight aggregation class analysis method and the lightning division map and the lightning disaster risk division map are drawn too by ArcGIS software.In addition,the evaluation results of disaster levels are compared and analyzed. Studies have shown that the temporal and spatial distribution characteristics of lightning accidents and activities have obvious consistency,and the concentrated occurrence period is June to August,at 16:00;the areas with high lightning strike density and the areas with high annual average lightning strike density have a certain degree of consistency. According to the corresponding relationship,the density of lightning accidents in northern is higher than that in southern,and the number of lightning casualties in farmland,buildings (structures)and in the field(open areas)is the most. Lightning casualties in rural areas accounted for 85.16% of the total lightning accidents. A comparative analysis of the lightning disaster level and the lightning disaster risk level of various cities show that the matching degree between the two is 45%.The severely-hit area and the high-risk area do not match;the medium-hit area,the medium-risk area and the less-hit area,and the low-risk area are matched to a certain extent.And the disaster level based on lightning disaster data analysis is lower than the lightning disaster risk level based on lightning monitoring data. In actual lightning prevention and mitigation work,the distribution characteristics of the two can be combined to take corresponding disaster reduction.

参考文献/References:

[1] 许小峰. 雷电灾害与监测预报[J]. 气象,2004,30(12):17-21. XU Xiaofeng. Lightning and thunder disasters and its detecting and forecasting[J]. Meteorological Monthly,2004,30(12):17-21.(in Chinese)
[2] 池景冬. 气象部门防雷减灾的重要性及其工作职能[J]. 农业与技术,2012,32(10):169-169. CHI Jingdong. The importance of lightning protection and disaster mitigation in meteorological departments and their work functions[J]. Agriculture & Technology,2012,32(10):169-169(. in Chinese)
[3] 石蓉蓉, 雷媛,王东法, 等. 1949-2007年影响浙江热带气旋灾情分析及评估研究[J]. 科技通报,2008(5):612-616. SHI Rongrong,LEI Yuan,WANG Dongfa,et al. Analysis and assessment of TC disaster influencing Zhejiang Province from 1949 to 2007[J]. Bulletin of Science and Technology,2008(5):612-616(. in Chinese)
[4] 李绣东. 全国雷电灾害统计分析[J]. 沙漠与绿洲气象,2011,05(Z1):1-3. LI Xiudong. Statistical analysis of national lightning disasters[J]. Desert and Oasis Meteorology,2011,05(Z1):1-3(. in Chinese)
[5] 祁海霞,智协飞,白永清. 中国干旱发生频率的年代际变化特征及趋势分析[J]. 大气科学学报,2011,34(4):447-455. QI Haixia,ZHI Xiefei,BAI Yongqing. Interdecadal variation and trend analysis of the drought occurrence frequency in China[J]. Journal of Atmospheric Sciences,2011,34(4):447-455(. in Chinese)
[6] Ranke U. Natural Disaster Risk Management[M]. Springer International Publishing, 2016.
[7] 王志,韩焱红,李蔼恂. 我国公路交通气象研究与业务进展[J]. 气象科技进展,2017(1):85-89. WANG Zhi,HAN Yanhong,LI Aixun. Advance in research and operation in traffic meteorological service in China[J]. Advances in Meteorological Science and Technology,2017(1):85-89(. in Chinese)
[8] 刘平英,周清倩,胡颖, 等. 近12年云南省云地闪活动变化及雷电灾害时空分布特征[J]. 气象研究与应用,2018,39(3):88-93. LIU Pingying,ZHOU Qingqian,HU Ying,et al. Changes in cloud-to-ground flashes and spatial and temporal distribution characteristics of 1ightning disaster in Yunnan in recent 12 years[J]. Meteorological Research and Application,2018,39(3):88-93.(in Chinese)
[9] 張, 継権, 山本, 晴彦, 劉, 興朋. A study on risk assessment and risk regionalization of agricultural drought disaster in northwestern Liaoning[J]. Western Regional Division Report of Natural Disaster Research Council,2010(34):61-64.
[10] 王萍, 刘涛, 杜萍,等. 2000-2017年中国灾害风险研究的知识图谱分析[J].自然灾害学报, 2019, 28(4):169-177. WANG Ping, LIU Tao, DU Ping, et al. Knowledge graph analysis of disaster risk research in China from 2000 to 2017[J]. Journal of Natural Disasters, 2019, 28(4):169-177(. in Chinese)
[11] 殷启元, 范祥鹏, 陈绿文, 等.广东省雷电伤亡事故特征分析[J].自然灾害学报, 2019, 28(6):204-213. YIN Qiyuan,FAN Xiangpeng,CHEN Luwen,et al. Characteristic analysis of Guangdong lightning casualties[J]. Journal of Natural Disasters, 2019,28(6):204-213.(in Chinese)
[12] 倪曼,宫宇,肖军,等. 核电厂火灾概率安全评价中详细火灾情景分析方法探讨[J]. 核安全,2015,14(4):90-94. NI Man,GONG Yu,XIAO Jun,et al. Analysis on mapping knowledge domain of disaster risk research in China from 2000 to 2017[J]. Nuclear Safety,2015,14(4):90-94.(in Chinese)
[13] 艾瑞雯. 面向地震应急测绘灾情信息综合统计分析技术和方法研究[D].辽宁:辽宁工程技术大学, 2014. AI Ruiwen. Study on Technology and Methods of Disaster Information Statistical Analysis in Earthquake Surveying[D]. Liaoning:Liaoning Technical University,2014(. in Chinese)
[14] 孙峥, 庄丽, 冯启民.风暴潮灾情等级识别的模糊聚类分析方法研究[J].自然灾害学报, 2007,16(4):49-54. SUN Zheng,ZUANG Li,FENG Qimin. Fuzzy cluster analysis-based storm surge disaster gradation[J]. Journal of Natural Disasters,2007,16(4):49-54.(in Chinese)
[15] 毛伊敏, 张茂省, 李林, 等.不确定密度聚类分析算法的滑坡危险性评价[J].自然灾害学报, 2019, 28(1):139-148. MAO Yimin,ZHANG Maosheng,LI Lin,et al. Landslide hazards assessment based on uncertain hierachical clustering algorithm[J]. Journal of Natural Disasters, 2019, 28(1):139-148.
[16] 朱浩,王凯,程向阳,等. 安徽省雷电灾害特征分析及区域灾情评估[J]. 长江流域资源与环境,2015,24(1):162-168. ZHU Hao,WANG Kai,CHENG Xiangyang,et al. Characteristics analysis and regional damageevaluationof lightning disasters in Anhui Province[J]. Resources and Environment in the Yangtze Basin,2015,24(1):162-168.(in Chinese)
[17] 姜德良,张韧,葛珊珊. 一种风险评估分样本定权方法——以港口自然灾害为例[J]. 自然灾害学报,2017,26(3):11-20. JIANG Deliang,ZHANG Ren,GE Shanshan. Weight deciding method of different samples for risk assessment-taking port natural disaster as an example[J]. Journal of Natural Disasters,2017,26(3):11-20(. in Chinese)
[18] 曾玲艳,周文剑,陈庭甫,等. 基于综合灾情指数方法的2012-2016年江西省自然灾害灾情分析[J]. 安徽农业科学,2018,46(12):64- 68. ZENG Lingyan,ZHOU Wenjian,CHEN Tingfu,et al. Analysis on natural disasters of Jiangxi Province from 2012 to 2016 based on comprehensive disaster index method[J]. Anhui Agricultural Sciences,2018,46(12):64-68(. in Chinese)
[19] 高春泥,程金花,陈晓冰. 基于灰色关联法的北京山区水土保持生态安全评价[J]. 自然灾害学报,2016,25(2):69-77. GAO Chunni,CHENG Jinhua,CHEN Xiaobing. Evaluation of ecological safety of water and soil conservation in Beijing mountainous area based on grey correlation method[J]. Journal of Natural Disasters,2016,25(2):69-77(. in Chinese)
[20] 刘佼, 金琼, 韩照全.江苏省雷灾特征分析及灾情灰色关联评估[J].气象与环境科学, 2019, 42(2):97-103. LIU Jiao, JIN Qiong, HAN Zhaoquan.Analysis of lightning characteristics in Jiangsu Province and gray correlation assessment of disasters situation[J]. Meteorological and Environmental Sciences, 2019, 42(2):97-103(. in Chinese)
[21] 李乐林, 江万寿, 郭程方.基于区域多次回波点密度分析的城区LiDAR建筑物提取[J].国土资源遥感, 2015, 27(2):29-35. LI Lelin, JIANG Wanshou, GUO Chengfang. Classificationof LiDAR point clouds in urban area areas based on the analysis of regional multi-returndensity[J]. Remote Sensing for Land and Resources, 2015, 27(2):29-35.(in Chinese)
[22] 李衣长,沈永生,陈阿仲, 等. 基于GIS图层叠置法的精细化雷电灾害易损度区划模型[J]. 气象科技,2018,46(1):182-188. LI Yichang,SHEN Yongsheng,CHEN Azhong,et al. Refined lightning disaster vulnerability zoning model based on GIS map stacking method[J]. Meteorological Science and Technology,2018,46(1):182-188.(in Chinese)
[23] 刘晓冉,康俊,王颖, 等. 基于GIS的重庆地区不同季节干旱灾害风险评估与区划[J]. 自然灾害学报,2019,28(2):92-100. LIU Xiaoran,KANG Jun,WANG Ying,et al. Assessment and regionalization on drought disaster of different season in Chongqing area based on GIS[J]. Journal of Natural Disasters,2019,28(2):92-100.(in Chinese)
[24] 史北祥,杨俊宴. 基于GIS平台的大尺度空间形态分析方法——以特大城市中心区高度、密度和强度为例[J]. 国际城市规划,2019,34(2):111-117. SHI Beixiang,YANG Junyan. Large scale spatial morphology analysis method based on GIS platform:Take the height,density and intensity of the metropolitan central districts as example[J]. International Urban Planning,2019,34(2):111-117.(in Chinese)
[25] 顾雪松, 迟国泰, 程鹤.基于聚类-因子分析的科技评价指标体系构建[J].科学学研究, 2010, 28(4):508-514. GU Xuesong, CHI Guotai, CHENG He. The establishment of science and technology evaluation indicators system based on cluster-factor analysis, 2010, 28(4):508-514.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2020-8-27;改回日期:2021-10-10。
基金项目:2019年度江西省气象局面上项目
作者简介:夏雪(1990-),女,工程师,硕士,主要从事资料同化与数值天气预报研究和雷电防护研究.E-mail:1136294842@qq.com
通讯作者:金勇根(1963-),男,正高级工程师,主要从事气象服务与应用气象研究和雷电防护研究.E-mail:1298706237@qq.com
更新日期/Last Update: 1900-01-01