[1]万远春,于彦彦,丁海平,等.考虑不均匀地壳构造的四川盆地地震动模拟研究[J].自然灾害学报,2022,31(02):204-214.[doi:10.13577/j.jnd.2022.0222]
 WAN Yuanchun,YU Yanyan,DING Haiping,et al.Seismic simulation of Sichuan Basin considering inhomogeneous crustal structure[J].,2022,31(02):204-214.[doi:10.13577/j.jnd.2022.0222]
点击复制

考虑不均匀地壳构造的四川盆地地震动模拟研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年02期
页码:
204-214
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Seismic simulation of Sichuan Basin considering inhomogeneous crustal structure
作者:
万远春1 于彦彦1 丁海平1 胡颖平2
1. 苏州科技大学 江苏省结构工程重点实验室, 江苏 苏州 215009;
2. 苏州立诚建筑设计院有限公司, 江苏 太仓 215400
Author(s):
WAN Yuanchun1 YU Yanyan1 DING Haiping1 HU Yingping2
1. Key Laboratory of Structural Engineering of Jiangsu Province, Suzhou University of Science and Technology, Suzhou 215009, China;
2. Suzhou Licheng Architectural Design Institute, Taicang 215400, China
关键词:
不均匀地壳四川盆地谱元法并行计算盆地地震动
Keywords:
heterogeneous crustSichuan Basinspectral element methodparallel computingbasin seismic effect
分类号:
TU4;X43
DOI:
10.13577/j.jnd.2022.0222
摘要:
考虑龙门山两侧地壳构造的横向不均匀性建立了三维四川盆地模型,基于谱元法和并行计算技术模拟了盆地地表的地震动响应。考虑震源形式、模型维度及震源上升时间的变化,通过对比均匀与不均匀地壳盆地模型下模拟的地表速度峰值(PGV)及其比值R的分布,研究了横向不均匀地壳构造对四川盆地长周期模拟地震动的影响。结果表明,复杂有限断层破裂下最大R值在0.9~1.2之间,盆地外的茂县-平武-青川之间及四川盆地内的局部区域受影响显著,其它区域的地震动受不均匀地壳的影响不明显。三维点源破裂下不均匀地壳的影响程度相比有限断层时更突出,R值在0.6~2.6之间,盆地内外受影响区域的范围也更大。点源破裂下二盆地模型的R值最大,可达4.5以上,且受影响区域集中在盆地内部。此外,点源破裂下无论二维还是三维盆地模型,震源上升时间延长时不均匀地壳的影响程度均显著降低。
Abstract:
Considering the lateral inhomogeneity of the crustal structure on both sides of Longmen Mountain,a three-dimensional model of Sichuan Basin is established, the seismic response of the basin under the limited fault rupture of the Wenchuan earthquake is simulated based on spectral element method and parallel computing technology.Considering the variation of source form,model dimension and the rise time of source,the influence of lateral heterogeneous crustal structure on the long-period simulated ground motion in Sichuan Basin was studied by comparing the distribution of the simulated peak surface velocity(PGV)and its ratio R under the homogeneous and heterogeneous crustal basin models. The results show that the maximum R value of complex finite fault rupture ranges from 0.9 to 1.2,and the area outside the basin between Maoxian-Pingwu-Qingchuan and some areas within the Sichuan Basin are significantly affected,while the influence of non-uniform crust is not obvious in other areas. Compared with the finite fault,the influence degree of the heterogeneous crust under the three-dimensional point source rupture is more prominent,with the R value between 0.6 and 2.6,and the scope of the affected area inside and outside the basin is larger. Under the point source fracture,the R value of the two-dimensional basin model is the largest,which can reach more than 4.5,and the affected area is concentrated in the basin. In addition,in both 2D and 3D basin models with point source rupture,the influence of the inhomogeneous crust is significantly reduced when the source rise time is prolonged.

参考文献/References:

[1] Anderson J G,Bodin P,Brune J N,et al. Strong ground motion from the Michoacan,Mexico, Earthquake[J]. Science,1986,233(4768):1043-1049.
[2] 郝敏,谢礼立. 921台湾集集地震的烈度等震线[J]. 哈尔滨工业大学学报,2007, 39(2):169-172. HAO Min,XIE Lili. Intensity isoseismal lines of the 921 Taiwan Jiji earthquake[J]. Journal of Harbin Institute of Technology,2007, 39(2):169-172.(in Chinese)
[3] 非明伦, 崔建文, 赵永庆, 等.施甸地震震害分析[J].地震研究, 2002, 25(2):192-199. FEI Minglun,CUI Jianwen,ZHAO Yongqing,et al. Earthquake damage analysis of Shidian earthquake[J]. Earthquake Research,2002, 25(2):192-199.(in Chinese)
[4] Magistrale H,Day S M,Clayton R W,et al. The SCEC southern California reference three-dimensional seismic velocity model version 2[J]. Bulletin of the Seismological Society of America, 2000,90(6B):S65- S76.
[5] Pitarka A, Irikura K, Iwata T, et al. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu(Kobe), Japan, earthquake[J]. Bulletin of the Seismological Society of America,1998,88(2):428-440.
[6] Wang C Y,Y H Lee,M L Ger,et al. Investigating subsurface structures and P- and S-wave velocities in the Taipei basin[J]. TAO,2004,15(4):609-627.
[7] Manakou M V,Raptakis D G,Chávez-García F J,et al. 3D soil structure of the Mygdonian basin for site response analysis[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11):1198-1211.
[8] 张振, 陈学良, 高孟潭, 等.玉溪盆地三维速度结构建模[J].地震学报, 2017, 39(6):930-940, 976. ZHANG Zhen,CHEN Xueliang,GAO Mengtan,et al. 3D velocity structure modeling of Yuxi Basin[J]. Acta Seismologica Sinica,2017, 39(6):930-940, 976.(in Chinese)
[9] 师黎静, 苏茜, 刘宇实, 等.厦门本岛近地表三维速度结构建模研究[J].振动与冲击, 2016, 35(16):43-48. SHI Lijing,SU Xi,LIU Yushi,et al. Study on 3D velocity structure modeling of Xiamen Island[J]. Journal of Vibration and Shock,2016, 35(16):43-48.(in Chinese)
[10] 刘启方, 于彦彦, 章旭斌.施甸盆地三维地震动研究[J].地震工程与工程振动, 2013, 33(4):54-60. LIU Qifang,YU Yanyan,ZHANG Xubin. Study on 3D ground motion in Shidian Basin[J]. Earthquake Engineering and Engineering Dynamics,2013, 33(4):54-60.(in Chinese)
[11] 刘启方.1556年华县大地震地震动场模拟[J].自然灾害学报, 2020, 29(5):1-10. LIU Qifang. Ground motion simulation of the 1556 Huaxian earthquake[J]. Journal of Natural Disasters, 2020, 29(5):1-10.(in Chinese)
[12] 章小龙, 李小军, 周正华, 等.武都盆地效应三维有限元数值模拟[J].振动工程学报, 2018, 31(5):811-820. ZHANG Xiaolong,LI Xiaojun,ZHOU Zhenghua,et al. 3D finite element numerical simulation of Wudu basin effect[J]. Journal of Vibration Engineering,2018, 31(5):811-820.(in Chinese)
[13] 张建毅, 薄景山, 王振宇, 等.汶川地震局部地形对地震动的影响[J].自然灾害学报, 2012, 21(3):164-169. ZHANG Jianyi,BO Jingshan,WANG Zhenyu,et al. Influence of local topography on seismic ground motion in Wenchuan earthquake[J]. Journal of Natural Disasters, 2012, 21(3):164-169.(in Chinese)
[14] Bjerrum L W,S?ensen M B,Atakan K. Strong ground-motion simulation of the 12 May 2008 Mw 7.9 Wenchuan earthquake,using various slip models[J]. Bulletin of the Seismological Society of America,2010,100(5B):2396-2424.
[15] Zhang W,Shen Y,Chen X F. Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May 2008[J]. Science in China Series D:Earth Sciences,2008,51(12):1673-1682.
[16] Yu Y Y,Ding H P,Liu Q F. Three-dimensional simulations of strong ground motion in the Sichuan basin during the Wenchuan earthquake[J]. Bulletin of Earthquake Engineering,2017,15(11):4661-4679.
[17] 朱介寿. 汶川地震的岩石圈深部结构与动力学背景[J].成都理工大学学报(自然科学版), 2008, 35(4):348-356. ZHU Jieshou. Deep lithospheric structure and dynamic background of Wenchuan earthquake[J]. Journal of Chengdu University of Technology (Natural Science Edition),2008, 35(4):348-356.(in Chinese)
[18] 嘉世旭, 刘保金, 徐朝繁, 等.龙门山中段及两侧地壳结构与汶川地震构造[J].中国科学:地球科学, 2014, 44(3):497-509. JIA Shixu,LIU Baojin,XU Chaofan,et al. Crustal structure and Wenchuan seismotectonics in the middle and both sides of Longmen Mountain[J]. Chinese Science:Geosciences,2014, 44(3):497-509.(in Chinese)
[19] 杜晨晓, 谢富仁, 张扬, 等.1976年M_S7.8唐山地震断层动态破裂及近断层强地面运动特征[J].地球物理学报, 2010, 53(2):290-304. DU Chenxiao,XIE Furen,ZHANG Yang,et al. Fault dynamic rupture and near fault strong ground motion characteristics of 1976 M_S7.8 Tangshan earthquake[J]. Acta geophysica Sinica,2010, 53(2):290-304.(in Chinese)
[20] Takemura Shunsuke, Kobayashi Manabu, Yoshimoto Kazuo. High-frequency seismic wave propagation within the heterogeneous crust:effects of seismic scattering and intrinsic attenuation on ground motion modelling[J]. Geophysical Journal International, 2017, 210(3):1806-1822.
[21] 贾相玉, 温瑞智, 周正华.竖向断裂缝对场地地震动的影响分析[J].自然灾害学报, 2005, 14(5):170-173. JIA Xiangyu,WEN Ruizhi,ZHOU Zhenghua. Influence of vertical fracture on ground motion[J]. Journal of Natural Disasters, 2005, 14(5):170-173.(in Chinese)
[22] 刘启元, 李昱, 陈九辉, 等.汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究[J].地球物理学报, 2009, 52(2):309-319. LIU Qiyuan,LI Yu,CHEN Jiuhui,et al. Wenchuan Ms 8.0 earthquake:a preliminary study of S-wave velocity structure in the crust and upper mantle[J]. Acta Geophysica Sinica,2009, 52(2):309-319.(in Chinese)
[23] 胥颐, 黄润秋, 李志伟, 等.龙门山构造带及汶川震源区的S波速度结构[J].地球物理学报, 2009, 52(2):329-338. XU Yi,HUANG Runqiu,LI Zhiwei,et al. S-wave velocity structure of Longmenshan tectonic belt and Wenchuan earthquake source area[J]. Acta Geophysica Sinica,2009, 52(2):329-338.(in Chinese)
[24] Shunping Pei, Jinrong Su, Haijiang Zhang, et al. Three-dimensional seismic velocity structure across the 2008 Wenchuan Ms8.0 earthquake, Sichuan, China[J]. Tectonophysics, 2009, 491(1):211-217.
[25] 赵盼盼, 陈九辉, 刘启元, 等.龙门山断裂带中上地壳速度结构的短周期环境噪声成像[J].地球物理学报, 2015, 58(11):4018-4030. ZHAO Panpan,CHEN Jiuhui,LIU Qiyuan,et al. Short period ambient noise imaging of the velocity structure of the upper crust in the Longmenshan fault zone[J]. Acta Geophysica Sinica,2015, 58(11):4018-4030.(in Chinese)
[26] 李海涛, 邵泽东.空间插值分析算法综述[J].计算机系统应用, 2019, 28(7):1-8. LI Haitao,SHAO Zedong. Review of spatial interpolation analysis algorithm[J]. Computer System Application,2019, 28(7):1-8.(in Chinese)
[27] 尹丽君. 兰州盆地三维剪切波速度结构建模[D].哈尔滨:哈尔滨工业大学, 2008. YIN Lijun. Modeling of 3D Shear Wave Velocity Structure in Lanzhou Basin[D]. Harbin:Harbin Institute of Technology,2008.(in Chinese)
[28] Ji C,Hayes G. Source model of the May 12th 2008 Wenchuan earthquake[EB/OL].(2008-08-10)[2021-01-15] http://earthqu-ake.usgs.gov/eqcenter/eqarchives/poster/2008/20080512.php,2015.
[29] Chavez M,Cabrera E,Madariaga R,et al. Low-Frequency 3D Wave Propagation Modeling of the 12 May 2008 Mw 7.9 Wenchuan Earthquake[J]. Bulletin of the Seismological Society of America,2010,100(5B):2561- 2573.
[30] Komatitsch D,Vilotte J P. The spectralelement method:an efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America,1998,88(2):368-392.
[31] Emmanuel Chaljub,Dimitri Komatitsch,Jean-Pierre Vilotte,et al. Spectral-element analysis in seismology[J]. Advances in Geophysics, 2007, 48:365-419.
[32] Priolo E,Seriani G. A numerical investigation of Chebyshev spectral element method for acoustic wave propagation[C]//Proc. 13th IMACS Conf. on Comp. Appl. Math. 1991.

相似文献/References:

[1]肖递祥,王佳津,曹萍萍,等.四川盆地突发性暖区暴雨特征及环境场条件分析[J].自然灾害学报,2020,29(03):110.[doi:10.13577/j.jnd.2020.0312]
 XIAO Dixiang,WANG Jiajin,CAO Pingping,et al.Characteristics and environmental conditions of the sudden warm-sector rainstorms in Sichuan basin[J].,2020,29(02):110.[doi:10.13577/j.jnd.2020.0312]

备注/Memo

备注/Memo:
收稿日期:2021-1-31;改回日期:2021-4-9。
基金项目:国家自然科学基金青年基金项目(51808371);江苏省高等学校自然科学研究面上项目(18KJB560017);江苏省结构工程重点实验室开放研究课题(ZD1703)
作者简介:万远春(1996-),男,硕士研究生,主要从事场地地震效应研究.E-mail:729286480@qq.com
通讯作者:于彦彦(1986-),男,讲师,博士,主要从事场地地震效应及近场波动数值模拟研究.E-mail:yyy_usts@126.com
更新日期/Last Update: 1900-01-01