[1]寇佳亮,李勇杰,张亚茹,等.卤水长期浸泡下高延性混凝土力学性能试验及强度衰减模型研究[J].自然灾害学报,2022,31(02):186-197.[doi:10.13577/j.jnd.2022.0220]
 KOU Jialiang,LI Yongjie,ZHANG Yaru,et al.Experimental research on mechanical properties and compressive strength attenuation model of HDC after long-term in brine immersion[J].,2022,31(02):186-197.[doi:10.13577/j.jnd.2022.0220]
点击复制

卤水长期浸泡下高延性混凝土力学性能试验及强度衰减模型研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
31
期数:
2022年02期
页码:
186-197
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Experimental research on mechanical properties and compressive strength attenuation model of HDC after long-term in brine immersion
作者:
寇佳亮12 李勇杰1 张亚茹1 张嘉玮1 周恒3
1. 西安理工大学 土木建筑工程学院, 陕西 西安 710048;
2 西安理工大学 省部共建西北旱区生态水利国家重点实验室, 陕西 西安 710048;
3. 中国电建集团西北勘测设计研究院有限公司, 陕西 西安 710065
Author(s):
KOU Jialiang12 LI Yongjie1 ZHANG Yaru1 ZHANG Jiawei1 ZHOU Heng3
1. School of Civil Engineering & Architecture, Xi’an University of Technology, Xi’an 710048, China;
2. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China;
3. Northwest Engineering Corporation Limited, Power China, Xi’an 710065, China
关键词:
高延性混凝土卤水长期浸泡力学性能抗压强度衰减模型损伤破坏准则
Keywords:
high ductile concretelong-term immersion brinemechanical propertiescompressive strength attenuation modeldamage failure criteria
分类号:
TU502+.6;X43
DOI:
10.13577/j.jnd.2022.0220
摘要:
采用4种不同溶液(0% Cl+0% SO42-、5% Cl+5% SO42-、5% Cl+10% SO42-、10% Cl+5% SO42-)对高延性混凝土(HDC)立方体试块进行卤水长期浸泡试验,得出在浸泡时间和卤水浓度不同时HDC基本力学性能的变化规律。试验结果表明,在4种不同卤水环境下,HDC强度和质量变化规律差异较大。其中,强度从开始浸泡到90 d期间,4种不同溶液中,(5% Cl+10% SO42-)环境下HDC强度降低率最高达15.3%,表明SO42-浓度的提高,加快了HDC的侵蚀。在溶液(10% Cl+5% SO42-)中HDC强度损失率在360 d时达到11.90%,最终360 d浸泡结束时不同卤水浓度强度损失率(10% Cl+5% SO42-)>(5% Cl+10% SO42-)>(5% Cl+5% SO42-)。30 d时溶液(5% Cl+5% SO42-)中的HDC质量出现增加,浸泡至210 d时溶液(5% Cl+10% SO42-)中的质量损失率达到-0.6%,直至试验结束一直处于质量增加状态,溶液(10% Cl+5% SO42-)中的质量损失率在浸泡270 d时最大达到-1.1%,且整个试验阶段质量几乎一直是增加的。从HDC浸泡至360 d时质量损失率的变化情况,可以得出溶液对其质量损失率即影响程度上:(10% Cl+5% SO42-)> (5% Cl+10% SO42-)> (0% Cl+0% SO42-)> (5% Cl+5% SO42-)。最后,通过HDC在不同溶液下与清水组抗压强度对比变化得到不同卤水下HDC抗压强度衰减模型和损伤破坏准则。
Abstract:
The long-term immersion test of HDC cubic specimens was conducted in 4 different solutions(0%Cl-+ 0% SO42-,5% Cl-+5% SO42-,5% Cl-+ 10% SO42-,10% Cl-+ 5%SO42-),and the law of changed of HDC basic mechanical properties with different immersion times and brine concentrations was obtained.The test results showed that the change laws of HDC strength and mass varies greatly with different immersion times in the 4 brine different environments.In terms of HDC strength,during the period from the beginning of immersion to the 90 d, the reduction rate of HDC strength was the highest(up to 15.3%)in the 5%Cl-+10%SO42- environment, indicating that the increase in the concentration of SO42- accelerated the erosion of HDC concrete.However,in the last day of immersion the reduction rate of the concrete strength in(10%Cl-+5%SO42-)solution is the highest 11.90%, followed by the reduction rate in(5%Cl-+10%SO42-)solution, and the reduction rate in(5%Cl-+5%SO42-) solution was the lowest. At 30 d,the HDC mass in the solution(5%Cl-+5%SO42-)increased. In the 210 d,the mass loss rate of HDC in(5%Cl-+10%SO42-)solution,reached -0.6%, and the mass keeped increasing till the end of the test. In the 270 d of immersion,the mass loss rate in(10%Cl-+5%SO42-)reached the highest -1.1%,and the mass has almost always been in a relative increase. The variation of the mass loss rate of HDC from the beginning of immersion to the 360 d showed that the degree of solution influence on the mass loss rate followed the sequence:(10%Cl-+5%SO42-)>(5%Cl-+10%SO42-)>(0%Cl-+0%SO42-)>(5%Cl-+5%SO42-).Finally,the HDC compressive strength attenuation model and damage failure criterion of different brines were obtained by comparing the compressive strength of HDC with different water solutions under different solutions.

参考文献/References:

[1] 马亚飞, 王磊, 张建仁.氯盐环境下钢筋混凝土构件锈胀开裂风险概率分析[J].自然灾害学报, 2012, 21(4):207-215. MA Yafei, WANG Lei, ZHANG Jianren. Risk probability analysis of chloride-induced corrosion cracking of reinforced concrete member[J].Journal of Natural Disasters, 2012, 21(4):207-215(. in Chinese)
[2] 金祖权, 孙伟, 张云升, 等.混凝土在硫酸盐、氯盐溶液中的损伤过程[J].硅酸盐学报, 2006, 34(5):630-635. JING Zuquan,SUN Wei,ZHANG Yunsheng, et al.Damage process of concrete in sulfate and chloride salt solution[J]. Journal of Silicate, 2006, 34(5):630-635(. in Chinese)
[3] Pilvar A,Ramezanianpour A A,Rajaie H. New method development for evaluation concrete chloride ion permeability[J]. Construction & Building Materials,2015,93(93):790-797.
[4] Soudki K A,Safiuddin M,Jeffs P,et al. Chloride penetration resistance of concrete sealer and coating systems[J]. Statyba,2015,21(4):492-502.
[5] Yang C C,Cho S W. The relationship between chloride migration rate for concrete and electrical current in steady state using the accelerated chloride migration test[J]. Materials & Structures,2004,37(7):456-463.
[6] Al-Dulaijan S U,Maslehuddin M,Al-Zahrani M M,et al. Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate[J]. Cement and Concrete Composites,2003,25(4):429-437.
[7] 高润东, 赵顺波, 李庆斌.复合因素作用下混凝土硫酸盐侵蚀劣化机理[J].建筑材料学报, 2009, 12(1):41-46. GAO Ruidong,ZHAO Shunbo,LI Qingbin. Mechanism of deterioration of concrete sulfate attack under combined factors[J]. Journal of Building Materials,2009,12(1):41-46(. in Chinese)
[8] 牛荻涛, 袁斌, 王家滨.盐湖卤水侵蚀喷射混凝土宏观性能及微观结构[J].西安建筑科技大学学报(自然科学版), 2017, 49(5):617- 623. NIU Ditao,YUAN Bin,WANG Jiabin. Macro performance and microstructure of shotcrete under salt lake brine erosion[J]. Journal of Xi ’an University of Architecture and Technology(Natural Science Edition),2017,49(5):617-623(. in Chinese)
[9] 金祖权, 孙伟, 赵铁军, 等.在不同溶液中混凝土对氯离子的固化程度[J].硅酸盐学报,2009,37(7):1068-1072. JIN Zuquan,SUN Wei,ZHAO Tiejun,et al.Chloride binding in concrete exposed to corrosive solutions[J]. Journal of Silicate, 2009,37(7):1068-1072(. in Chinese)
[10] 张茂花, 李雪成.冻融环境下纳米基础混凝土的抗硫酸盐侵蚀性能[J].自然灾害学报, 2018, 27(2):94-99. ZHANG Maohua, LI Xuecheng. Sulfate corrosion resistance of foundation concrete with nano-particles under freeze-thaw cycles[J]. Journal of Natural Disasters, 2018, 27(2):94-99(. in Chinese)
[11] 梁咏宁, 黄君一, 林旭健, 等.氯盐对受硫酸盐腐蚀混凝土性能的影响[J].福州大学学报(自然科学版), 2011, 39(6):947-951. LIANG Yongning,HUANG Junyi,LIN Xujian,et al. The effect of chloride on concrete under sulfate attack[J]. Journal of Fuzhou University (Natural Science Edition),2011,39(6):947-951(. in Chinese)
[12] 彭建新, 王华, 张建仁, 等. 氯盐侵蚀下钢筋混凝土氯离子扩散系数试验及其概率分析[J].中国公路学报, 2014, 27(6):77-83. PENG Jianxin,WANG Hua,ZHANG Jianren,et al. Experimental study on chloride ion diffusion coefficient in concrete and probabilistic analysis of its influence on deterioration performance of RC stuctures[J]. China Journal of Highways, 2014,27(6):77-83(. in Chinese)
[13] 寇佳亮, 刘菲菲, 赵丹丹, 等.常温养护条件下活性粉末混凝土抗硫酸盐侵蚀性能试验研究[J].自然灾害学报, 2020, 29(3):76-88. KOU Jialiang,LIU Feifei,ZHAO Dandan,et al. Experimental study on resistance to sulfate attack of active powder concrete under normal temperature curing condition[J]. Journal of Natural Disasters, 2020, 29(3):76-88(. in Chinese)
[14] Li V C.Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system[J].Cement and Concrete Research, 2002, 32(3):415-423.
[15] GB50082-2009普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社, 2010. GB50082-2009 Standard Test Method for Long-term Performance and Durability of Ordinary Concrete[S]. Beijing:China Building Industry Press,2010.
[16] GB50081-2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社, 2010. GB50081-2002 Standard Test Method for Mechanical Properties of Ordinary Concrete[S]. Beijing:China Building Industry Press,2010.(in Chinese)
[17] 姜磊. 硫酸盐侵蚀环境下混凝土劣化规律研究[D].西安:西安建筑科技大学, 2014. JIANG Lei. Study on the Deterioration Law of Concrete under Sulfate Attack Environment[D]. Xi’an:Xi’an University of Architecture and Technology, 2014(. in Chinese)
[18] 蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学, 1998. CAI Hao. Prediction Model of Concrete Frost Resistance Durability[D]. Beijing:Tsinghua University,1998(. in Chinese)
[19] 江见鲸, 陆新征, 叶列平.混凝土结构有限元分析[M].北京:清华大学出版社, 2005. JIANG Jianjing,LU Xinzheng,YE Lieping. Finite Element Analysis of Concrete Structure[M]. Beijing:Tsinghua University Press,2005(. in Chinese)
[20] 过镇海, 时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003. GUO Zhenhai, SHI Xudong. Principle and Analysis of Reinforced Concrete[M]. Beijing:Tsinghua University Press,2003(. in Chinese)

相似文献/References:

[1]寇佳亮,张亚茹,张晶.冻融循环后高延性混凝土疲劳性能试验及S-N曲线研究[J].自然灾害学报,2019,28(05):075.[doi:10.13577/j.jnd.2019.0509]
 KOU Jialiang,ZHANG Yaru,ZHANG Jing.Experimental study on fatigue property and S-N curve of high ductile fiber concrete under freeze-thaw cycles[J].,2019,28(02):075.[doi:10.13577/j.jnd.2019.0509]
[2]寇佳亮,王栋,张晶,等.卤水-干湿侵蚀下HDC力学性能试验及损伤本构模型研究[J].自然灾害学报,2020,29(02):076.[doi:10.13577/j.jnd.2020.0208]
 KOU Jialiang,WANG Dong,ZHANG Jing,et al.Experimental study on mechanical property and damage constitutive model of high ductile concrete under brine erosion-dry and wet cycle[J].,2020,29(02):076.[doi:10.13577/j.jnd.2020.0208]

备注/Memo

备注/Memo:
收稿日期:2020-2-18;改回日期:2021-10-13。
基金项目:国家自然科学基金项目(52079109,51408487);陕西省自然科学基础研究计划项目(2020JM-454)
作者简介:寇佳亮(1979-),男,副教授,博士,主要从事高性能纤维混凝土力学性能研究.E-mail:jialiangkou0918@163.com
更新日期/Last Update: 1900-01-01