[1]刘福臻,李旭德,王军朝,等.基于无人机和Rockfall Analyst的崩塌落石特征分析与运动学模拟——以察雅县崩塌落石为例[J].自然灾害学报,2021,30(03):171-180.[doi:10.13577/j.jnd.2021.0319]
 LIU Fuzhen,LI Xude,WANG Junchao,et al.Characteristic analysis and kinematic simulation of rockfall based on UAV and Rockfall Analyst: A case study of rockfall in Chaya County[J].,2021,30(03):171-180.[doi:10.13577/j.jnd.2021.0319]
点击复制

基于无人机和Rockfall Analyst的崩塌落石特征分析与运动学模拟——以察雅县崩塌落石为例
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年03期
页码:
171-180
栏目:
出版日期:
2021-06-28

文章信息/Info

Title:
Characteristic analysis and kinematic simulation of rockfall based on UAV and Rockfall Analyst: A case study of rockfall in Chaya County
作者:
刘福臻1 李旭德1 王军朝2 刘建康2 陈龙2 张佳佳2
1. 西南石油大学 土木工程与测绘学院, 四川 成都 610500;
2. 中国地质调查局地质灾害防治技术中心, 四川 成都 611734
Author(s):
LIU Fuzhen1 LI Xude1 WANG Junchao2 LIU Jiankang2 CHEN Long2 ZHANG Jiajia2
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China;
2. Technical Center for Geological Hazard Prevention and Control, CGS, Chengdu 611734, China
关键词:
崩塌落石灾害防治无人机数值模拟Rockfall Analyst
Keywords:
collapse and rockfalldisaster prevention and controlUAVRockfall Analyst
分类号:
P642.21;X4
DOI:
10.13577/j.jnd.2021.0319
摘要:
崩塌落石是高陡边坡的一种浅表部破坏方式,突发性强且随机性大,是严重的地质灾害之一。分析崩塌落石特征,并对落石进行运动学模拟对于灾害防治具有重大意义。以往的研究对于崩塌落石的运动学模拟大多基于二维模拟软件,人为控制了运动方向,具有一定的干扰性,部分独立的三维模拟软件计算时考虑的参数较多,增加了模拟难度。在调查方式上,无人机技术凭借机动灵活、工作效益高成为一种趋势。因此,文章以昌都市察雅县北西侧斜坡为研究区,结合现场调查和无人机三维倾斜摄影技术,调查分析了斜坡崩塌落石特征,通过三维模型获取了岩体结构面信息,分析了岩体稳定性;基于GIS环境下三维落石模拟软件Rockfall Analyst,根据历史崩塌轨迹采用参数反演的方法获得研究区斜坡下垫面参数,对物源区块石进行了运动轨迹、速度和弹跳高度的数值模拟。结果表明:(1)斜坡上主要存在三处物源区,岩体整体受三组主控结构面控制,不同结构面之间的组合破坏和冻融侵蚀影响下的岩体差异性分化是造成岩体失稳的主要因素;(2)通过模拟的运动轨迹确定了落石的威胁范围,弹跳高度和速度轨迹可为崩塌落石灾害防治的位置和防治措施的选择上提供地质依据。
Abstract:
Rockfall is a kind of shallow failure mode of high and steep slope, which is one of the serious geo-hazards.It is of great significance for disaster prevention to analyze the characteristics of collapse and rockfall and simulate the kinematics of rockfall. In the past, the kinematics simulation of rockfall is mostly based on two-dimensional simulation software, which artificially controls the movement direction and has a certain degree of interference. Some independent three-dimensional simulation software considers more parameters, which increases the difficulty of simulation. In the way of investigation, UAV technology has become a trend with its flexibility and high efficiency. Therefore, taking the northwest slope of Chaya County in Changdu city as the study area, combined with field investigation and UAV three-dimensional tilt photography technology, the characteristics of collapse and rockfall are investigated and analyzed. Based on Rockfall Analyst, a 3D rockfall simulation software under GIS platfoam, according to the historical collapse track, the underlying surface parameters of the slope in the study area are obtained by parameter inversion method, and the rock movement trajectory, velocity and bounce height are simulated numerically. The results show that:(1) there are mainly three provenance areas on the slope, and the rock mass is controlled by three groups of main structural planes. The combination failure of different structural planes and the differential differentiation of rock mass under the influence of freeze-thaw erosion are the main factors causing rock mass instability. (2) The threating range of rockfall is determined by the simulated motion trajectory. The bouncing height and velocity trajectory can provide geological basis for the location of rockfall geohazard prevention and the selection of prevention and control measures.

参考文献/References:

[1] 苏胜忠.边坡工程勘察中崩塌落石运动模式及轨迹分析[J].工程地质学报, 2011, 19(4):577-581. SU Shengzhong. Motion mode, calculation and analysis on rock falls in slope engineering investigation[J].Journal of Engineering Geology, 2011, 19(4):577-581.(in Chinese)
[2] 关朝阳, 李章国.西藏昌都地质灾害特点及防治对策[J].中国地质灾害与防治学报, 2018, 29(2):104-107. GUAN Chaoyang, LI Zhangguo. Characteristics and prevention measures of geological hazards in ChangduCity, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(2):104-107.(in Chinese)
[3] 董秀军, 黄润秋.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报, 2006(S2):3629-3635. DONG Xiujun, HUANG Runqiu. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(S2):3629-3635.(in Chinese)
[4] 王凤艳, 陈剑平, 付学慧, 等.基于VirtuoZo的岩体结构面几何信息获取研究[J].岩石力学与工程学报, 2008(1):169-175. WANG Fengyan, CHENG Jianping, FU Xuehui, et al. Study on geometrical information of obtaining rock mass discontinuities based on virtuozo[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(1):169-175.(in Chinese)
[5] 雷添杰, 李长春, 何孝莹.无人机航空遥感系统在灾害应急救援中的应用[J].自然灾害学报, 2011, 20(1):178-183. LEI Tianjie, LI Changchun, HE Xiaoying. Application of aerial remote sensing of pilotless aircraft to disaster emergency rescue[J]. Journal of natural Disasters, 2011, 20(1):178-183.(in Chinese)
[6] 温奇, 陈世荣, 和海霞, 等.无人机遥感系统在云南盈江地震中的应用[J].自然灾害学报, 2012, 21(6):65-71. WEN Qi, CHEN Shirong, HE Haixia, et al. Application of remote sensing of unmanned aerial vehicle in Yingjiang, Yunnan earthquake[J]. Journal of Natural Disasters, 2012, 21(6):65-71.(in Chinese)
[7] 李爱农, 张正健, 雷光斌, 等.四川芦山"4·20"强烈地震核心区灾损遥感快速调查与评估[J].自然灾害学报, 2013, 22(6):8-18. LI Ainong, ZHANG Zhengjian, LEI Guangbin, et al. Rapid investigation and assessment of disaster in the core areas Lushan "4.20" Earthquake in Sichuan using remote sensing date[J]. Journal of Natural Disasters, 2013, 22(6):8-18.(in Chinese)
[8] 黄海宁, 黄健, 周春宏, 等.无人机影像在高陡边坡危岩体调查中的应用[J].水文地质工程地质, 2019, 46(6):149-155. HUANG Haining, HUANG Jian, ZHOU Chunhong, et al. Applicationg of UAV images to rockfall investigation at the high and steep slope[J]. Hydrogeology & Engineering Geology, 2019, 46(6):149-155.(in Chinese)
[9] 王帅永, 唐川, 何敬, 等.无人机在强震区地质灾害精细调查中的应用研究[J].工程地质学报, 2016, 24(4):713-719. WANG Shuaiyong, TANG Chuan, HE Jing, et al. Use of unmanned aerial for precise investigation of geological hazard in strong seismic zone[J]. Journal of Engineering Geology, 2016, 24(4):713-719.(in Chinese)
[10] 黄海峰, 林海玉, 吕奕铭, 等.基于小型无人机遥感的单体地质灾害应急调查方法与实践[J].工程地质学报, 2017, 25(2):447-454. HUANG Haifeng, LIN Haiyu, LU Yiming, et al. Micro unmanned aerial vehicle based remote sensing method and application for emergency survey of individual geohazard[J]. Journal of Engineering Geology, Journal of Engineering Geology, 2017, 25(2):447-454.(in Chinese)
[11] 席远飞, 石岩, 张琳先, 等.利用无人机影像进行滑坡地形三维重建的研究[J].数字技术与应用, 2018, 36(10):94-102. XI Yuanfei, SHI Yan, ZHANG Linxian, et al. Reserach on 3D Reconstruction of landslide terrain using UAV images[J]. Digital Technology & Application, 2018, 36(10):94-102.(in Chinese)
[12] 余宏明, 栗志斌, 邸同宇, 等.基于无人机影像的滑坡地质灾害解译与稳定性评价——以秭归县盐关滑坡为例[J].科学技术与工程, 2019, 19(32):84-92. YU Hongming, LI Zhibin, DI Tongyu, et al. Unmanned aerial vehicle imagese-based landslide geohazards interpretation and stability analysis:an illustrative example of yangguan landslide[J]. Science Technology and Engineering, 2019, 19(32):84-92.(in Chinese)
[13] 王俊豪, 管建军, 魏云杰, 等.基于无人机倾斜摄影的黄土滑坡信息多维提取与灾害评价分析[J/OL].中国地质, 2020, 1(21):12-18. WANG Junhao, GUAN Jianjun, WEI Yunjie, et al. Multidimensional extraction of UAV tilt photograph-based information of loess landslide and its application[J/OL]. Geology In China, 2020, 1(21):12-18.(in Chinese)
[14] 胡厚田. 崩塌落石研究[A].铁道工程学报, 2005, 1(5):387-391. HU Houtian. Reserach on the collapse and falling stone[A]. Journal of Railway Engineering Society, 2005, 1(5):387-391.(in Chinese)
[15] 何宇航, 裴向军, 梁靖, 等.基于Rockfall的危岩体危险范围预测及风险评价——以九寨沟景区悬沟危岩体为例[J].中国地质灾害与防治学报, 2020, 31(4):24-33. HE Yuhang, PEI Xiangjun, LIANG Jing, et al. Risk assessment and range prediction of dangerous rockmass based on rockfall:a case study of the Xuangou Collapse[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4):24-33.(in Chinese)
[16] 亚南, 王兰生, 赵其华, 等.崩塌落石运动学的模拟研究[J].地质灾害与环境保护, 1996, 07(2):25-32. YA Nan, WANG Lansheng, ZHAO Qihua, et al. Simulation study of rockfall kinematics[J]. Journal of Geological Hazards and Environment Preservation, 1996, 07(2):25-32.(in Chinese)
[17] 孙娟娟, 王学良, 陈子干, 等. 高陡边坡危石的岩体结构特征识别及滚石运动特征预测[A], 工程地质学报, 2017, 33(8):45-54. SUN Juanjuan, WANG Xueliang, CHEN Zigan, et al. Characteristics of rock mass structure and prediction of rock mass behavior high-steep slope[A]. Journal of Engineering Geology, 2017, 33(8):45-54.(in Chinese)
[18] 谢金, 杨根兰, 覃乙根, 等.基于无人机与Rockfall的危岩体结构特征识别与运动规律模拟[J].河南理工大学学报(自然科学版), 2021, 40(1):55-64. XIE Jin, YANG Genlan, QIN Yigen, et al. Structural feature recognition and motion law simulation of dangerous rock mass based on UAV and Rockfall[J]. Journal of Henan Polytechnic University(Natural Science), 2021, 40(1):55-64.(in Chinese)
[19] 黎晨. 神仙居某景点危岩体稳定性评价及崩塌影响范围研究[D].中国地质大学(北京), 2019. LI Chen. Study on Stability Evaluation of Dangerous Rock Mass and Impact Range of Collapse in Shenxianju Scenic Spot[D]. China University of Geosciences(Beijing), 2019.
[20] 王颂, 张路青, 周剑, 等.青藏铁路设兴村段崩塌特征分析与运动学模拟[J].工程地质学报, 2020, 28(4):784-792. WANG Song, ZHANG Luqing, ZHOU Jian, et al. Characteristic analysis and kinematic simulation of Rockfall along Shexing village section of Qinghai-Tibet railway[J].Journal of Engineering Geology, 2020, 28(4):784-792.(in Chinese)
[21] Anna Radtke, DavidToe, FredericBerger, et al. Managing coppice forests for rockfall protection:lessons from modeling[J]. Annals of Forest Science, 2014, 71(4):125-135.
[22] 刘海洋, 王学良, 李丽慧, 等. 无人机航空摄影测量技术在崩塌灾害调查中的应用[A].工程地质学报, 2017, 82(6):81-87. LIU Haiyang, WANG Xueliang, LI Lihui, et al. Application of UAV aerial photogrammetry for Rockfall disaster survey[A]. Journal of Engineering Geology, 2017, 82(6):81-87.(in Chinese)
[23] LangpingLi, Hengxing Lan. Probabilistic modeling of rockfall trajectories:a review[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(4):77-85.
[24] HengxingLan, C. Derek Martin, C.H. Lim. RockFall analyst:A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J]. Computers and Geosciences, 2006, 33(2):38-42.
[25] 仉义星, 兰恒星, 李郎平, 等.综合统计模型和物理模型的地质灾害精细评估——以福建省龙山社区为例[J].工程地质学报, 2019, 27(3):608-622. ZHANG Yixing, LAN Hengxing, LI Langping, et al. Combining statistical model and physical model for refined assessment of geological disaster-A case study of Longshan community in Fujian province[J]. Journal of Engineering Geology, 2019, 27(3):608-622.(in Chinese)
[26] 汤明高,许强,马和平, 等.西藏昌都镇地质灾害发育特征及防治对策[J].中国地质灾害与防治学报, 2006(4):11-16. TANG Minggao, XU Qiang, MA Heping, et al. Characteristic and countermeasures for geological hazards in Changdu town, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2006(4):11-16.(in Chinese)
[27] 刘洪江, 兰恒星. "5.12"震后都江堰-汶川公路崩塌灾害模拟及危险性评价[J].资源科学, 2012, 34(2):345-352. LIU Hongjiang, LAN Hengxing. Rockfall disaster simulation and risk assessment on the Dujiangyan-Wenchuan highway after "5.12" earthquake[J]. Resources Science, 2012, 34(2):345-352.(in Chinese)
[28] 吕庆, 孙红月, 翟三扣, 等.边坡滚石运动的计算模型[J].自然灾害学报, 2003, 12(2):79-84. LU Qing, SUN Hongyue, ZHAI Sankou, et al. Evaluation models rockfall trajectory[J]. Journal of Natural Disasters, 2003, 12(2):79-84.(in Chinese)
[29] Rammer W., Brauner M., Dorren L., et al. Evaluation of a 3-D rockfall module within a forest patch model[J]. Natural Hazards and Earth System Science, 2010, 10(109):125-136.
[31] 章广成, 向欣, 唐辉明.落石碰撞恢复系数的现场试验与数值计算[J].岩石力学与工程学报, 2011, 30(6):1266-1273. ZHANG Guangcheng, XIANG Xin, TANG Huiming, et al. Field test and numerical calculation of restitution coefficient of Rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6):1266-1273.(in Chinese)
[32] 张恺, 伍法权, 沙鹏, 等.基于无人机倾斜摄影的矿山边坡岩体结构编录方法与工程应用[J].工程地质学报, 2019, 27(6):1448-1455. ZHANG Kai, WU Faquan, SHA Peng, et al. Geological cataloging method with oblique photography of UAV for open-pit slope and its application[J]. Journal of Engineering Geology, 2019, 27(6):1448-1455.(in Chinese)
[33] 王凤艳, 赵明宇, 王明常, 等.无人机摄影测量在矿山地质环境调查中的应用[J].吉林大学学报(地球科学版), 2020, 50(3):866-874. WANG Fengyan, ZHAO Mingyu, WANG Mingchang, et al. Application of UAV photogrammetry in mine geological environment survey[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3):866-874.(in Chinese)

相似文献/References:

[1]杨成林,陈宁生,李战鲁.汶川地震次生泥石流形成模式与机理[J].自然灾害学报,2011,20(03):031.
 YANG Cheng-lin,CHEN Ning-sheng,LI Zhan-lu.Formation mode and mechanism fordebris flow induced by Wenchuan earthquake[J].,2011,20(03):031.
[2]金福安,徐伟.城市深基坑工程施工环境保护与灾害防治[J].自然灾害学报,2006,15(04):117.
 JIN Fu-an,XU Wei.Environmental protection and disasters prevention for urban deep excavation[J].,2006,15(03):117.
[3]肖瑶,邓华锋,方景成,等.考虑抗剪强度参数劣化的水库岸坡稳定性分析[J].自然灾害学报,2018,27(02):100.[doi:10.13577/j.jnd.2018.0212]
 XIAO Yao,DENG Huafeng,FANG Jingcheng,et al.Considering the reservoir bank slope stability analysis under shear strength parameters of the degradation[J].,2018,27(03):100.[doi:10.13577/j.jnd.2018.0212]
[4]殷启睿,陈舒阳,刘航钊,等.基于链式成灾过程的暴雨泥石流成灾效率评估[J].自然灾害学报,2021,30(03):069.[doi:10.13577/j.jnd.2021.0308]
 YIN Qirui,CHEN Shuyang,LIU Hangzhao,et al.Evaluation of disaster efficiency of heavy rain and debris flow based on chain disaster process[J].,2021,30(03):069.[doi:10.13577/j.jnd.2021.0308]

备注/Memo

备注/Memo:
收稿日期:2020-12-08;改回日期:2021-02-01。
基金项目:中国地质调查局项目(20190644,20190505,20160279);第二次青藏高原综合科学考察研究(2019QZKK0902)
作者简介:刘福臻(1973-),男,副教授,主要从事测绘工程方面的研究.E-mail:2233896@qq.com
通讯作者:李旭德(1995-),男,硕士研究生,主要从事无人机地质灾害方面的研究.E-mail:lixude100151@163.com
更新日期/Last Update: 1900-01-01