[1]杜桁,徐略勤,邓海容,等.斜交简支梁桥地震位移响应特征与落座分析[J].自然灾害学报,2021,30(03):101-111.[doi:10.13577/j.jnd.2021.0312]
 DU Heng,XU Lueqin,DENG Hairong,et al.Seismic displacement response features and unseating analysis of simply-supported skewed bridges[J].,2021,30(03):101-111.[doi:10.13577/j.jnd.2021.0312]
点击复制

斜交简支梁桥地震位移响应特征与落座分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年03期
页码:
101-111
栏目:
出版日期:
2021-06-28

文章信息/Info

Title:
Seismic displacement response features and unseating analysis of simply-supported skewed bridges
作者:
杜桁1 徐略勤12 邓海容1 夏雪1 孙榕徽1
1. 重庆交通大学 土木工程学院, 重庆 400074;
2. 重庆交通大学, 省部共建山区桥梁及隧道工程国家重点实验室, 重庆 400074
Author(s):
DU Heng1 XU Lueqin12 DENG Hairong1 XIA Xue1 SUN Ronghui1
1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
关键词:
斜交简支梁桥地震位移斜交角挡块强度碰撞落座
Keywords:
simply-supported skewed bridgesseismic displacementskew angleretainer capacitypoundingunseating
分类号:
TU375.1;X9
DOI:
10.13577/j.jnd.2021.0312
摘要:
为了提高斜交简支梁桥在地震中防落座的能力,结合汶川震害特点,选取跨径为30m的典型斜交简支T梁桥,考虑材料和接触非线性因素,采用时程分析法研究了斜交角、挡块强度和伸缩缝大小对斜交简支梁桥地震位移响应特征的影响,基于板式橡胶支座的滑动状态探讨了斜交主梁的落座特征。研究表明:上部结构的位移响应在斜交角小于30°时以纵向为主,大于30°时以横向为主,主梁平面转角在斜交角为30°时最大;挡块强度的增大可降低支座纵、横向位移和主梁平面转角,但当挡块强度达到某一数值时(本文桥例为30%恒载支反力),其限位效果逐渐趋于平缓;伸缩缝处的不均匀碰撞导致斜交桥主梁两侧角点处的碰撞力明显更大,靠近桥面中心线处碰撞力最小甚至为零,且主梁容易沿着自身锐角端向桥面内发生转动。适当加强斜交主梁锐角端的挡块强度可有效降低桥梁的落座风险。
Abstract:
In order to improve the ability of simply supported skewed bridge to prevent unseating in earthquakes, a typical bridge with spans of 30m is selected as an illustration bridge based on the damage survey in the Wenchuan earthquake. Considering the material and contact nonlinearities,the effects of the skew angles, retainer capacities and expansion joint width were examined on the seismic displacement response characteristics of simply supported skewed bridges by using time history analysis method.The unseating characteristics of skewed girders were discussed based on the sliding states of the laminated rubber bearings.The results show that the displacement responses of superstructure is mainly along the longitudinal direction of the bridge when the skew angles are less than 30°, and along the transverse direction when the skew angles are greater than 30°. The largest rotation responses of superstructure is found when the skew angle is 30°.The increase of the retainer capacity can reduce the longitudinal and transverse displacement responses of bearings, as well as the rotation responses of superstructure. However, when the retainer capacity reaches a certain value(30% reaction force of the dead load in this case),the effects of displacement control by the retainers tend to be limited. The non-uniform pounding at the expansion joints results in significantly greater pounding forces at the corners on both sides of girder, and minimal or even zero pounding forces near the centerline of girder.The girder is more likely torotate towards the acute angles.By strengthening properly the retainers at the acute-angles of the skewed girder, the unseating risk of the bridges can be reduced effectively.

参考文献/References:

[1] 陈乐生, 庄卫林, 赵河清, 等. 汶川地震公路震害调查:桥梁[M]. 北京:人民交通出版社, 2012. CHEN Lesheng, ZHUANG Weilin, ZHAO Heqing, et al. Report on Highways’ Damage in the Wenchuan Earthquake:Bridge[M]. Beijing:China Communications Press, 2012. (in Chinese)
[2] Han Q, Du X, Liu J, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2):263-273.
[3] 孙得璋, 陈斌, 孙柏涛, 等. 桥梁多灾害研究综述[J]. 自然灾害学报, 2014, 23(6):32-37. SUN Dezhang, CHEN Bin, SUN Baitao, et al. Summary of bridge multi-disaster research[J]. Journal of Natural Disasters, 2014, 23(6):32-37. (in Chinese)
[4] JTG/T 2231-01-2020公路桥梁抗震设计规范[S]. 北京:人民交通出版社, 2020. JTG/T 2231-01-2020 Code for Seismic Design of Highway Bridges[S]. Beijing:China Communications Press, 2020. (in Chinese)
[5] Kun C,Yang Z, Chouw N. Seismic performance of skewed bridges with simultaneous effects of pounding and supporting soil[J]. Engineering Structures, 2018, 174:26-38.
[6] Chen J, Han Q, Liang X, et al. Effect of pounding on nonlinear seismic response of skewed highway bridges[J]. Soil Dynamics & Earthquake Engineering, 2017, 103:151-165.
[7] 陶源, 徐略勤, 姚凯, 等. 考虑双向碰撞效应的连续斜交桥地震响应研究[J]. 地震工程学报, 2019, 41(2):360-369. TAO Yuan, XU Lueqin, YAO Kai, et al. Study on seismic response of continuous skew bridge considering two-way collision effect[J]. Journal of Seismic Engineering, 2019, 41(2):360-369. (in Chinese)
[8] Kwon OS, Jeong SH. Seismic displacement demands on skewed bridge decks supported on elastomeric bearings[J]. Journal of Earthquake Engineering, 2013, 17:998-1022.
[9] 闫聚考, 李少华, 王军文. 强震下多跨斜交简支梁桥桥面旋转机理研究[J]. 桥梁建设, 2017, 47(1):29-34. YAN Jukao, LI Shaohua, WANG Junwen. Study on the rotation mechanism of multi-span skew simply supported beam bridge deck under strong earthquakes[J]. Bridge Construction, 2017, 47(1):29-34. (in Chinese)
[10] 陈彦江, 于连杰, 刘良, 等. 简支梁桥纵向地震碰撞响应研究[J]. 自然灾害学报, 2016, 25(2):159-166. CHEN Yanjiang, YU Lianjie, LIU Liang, et al. Longitudinal seismic impact response of simply supported beam bridge[J]. Journal of Natural Disasters, 2016, 25(2):159-166. (in Chinese)
[11] Noori HR,Memarpour MM, Yakhchalian M, et al. Effects of ground motion directionality on seismic behavior of skewed bridges considering SSI[J]. Soil Dynamics and Earthquake Engineering, 2019, 127:1-17.
[12] Jeon JS, Choi ES, Noh MH.Fragility characteristics of skewed concrete bridges accounting for ground motion directionality[J]. Structural Engineering and Mechanics, 2017, 63(5):647-657.
[13] 徐略勤, 李建中. 新型滑移挡块的设计、试验及防震效果研究[J]. 工程力学, 2016, 33(2):111-118. XU Lueqin, LI Jianzhong. Design and experimental investigation of a new type sliding retainer and its efficacy in seismic fortification[J]. Engineering Mechanics, 2016, 33(2):111-118. (in Chinese)
[14] Muthukumar S, Desroches R. A Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(7):811-828.
[15] Filipov ET, Revell JR, Fahnestock LA, et al. Seismic performance of highway bridges with fusing bearing components for quasi-isolation[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(11):1375-1394.
[16] 汤虎, 李建中, 邵长宇. 中小跨径板式橡胶支座梁桥横向抗震性能[J]. 中国公路学报, 2016, 29(3):55-65. TANG Hu, LI Jianzhong, SHAO Changyu. Transverse performance of small and medium span girder bridges with plate type elastomeric pad bearings in the transverse direction[J]. Journal of China Highway and Transport, 2016, 29(3):55-65. (in Chinese)
[17] 杜修力, 韩强. 桥梁结构抗震分析与地震保护[M]. 北京:科学出版社, 2019. DU Xiuli, HAN Qiang. Seismic Analysis and Seismic Protection of Bridge Structures[M]. Beijing:Science Press, 2019. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2020-10-01;改回日期:2020-10-10。
基金项目:国家自然科学基金资助(51978113);重庆市自然科学基金项目资助(CSTC2019JCYJ-MSXMX0691);重庆市研究生科研创新项目资助(CYS20298)
作者简介:杜桁(1996-),女,硕士研究生,主要从事桥梁抗震研究.E-mail:dduheng@163.com
通讯作者:徐略勤(1983-),男,教授,博士,博士生导师,主要从事桥梁抗震研究.E-mail:xulueqin@163.com
更新日期/Last Update: 1900-01-01