[1]高山,张开元,李捷奇,等.冻融-腐蚀复杂环境下圆钢管混凝土轴压性能试验研究[J].自然灾害学报,2021,30(03):093-100.[doi:10.13577/j.jnd.2021.0311]
 GAO Shan,ZHANG Kaiyuan,LI Jieqi,et al.Experimental study on axial performance of circular CFST under freeze-thaw and corrosion complex environment[J].,2021,30(03):093-100.[doi:10.13577/j.jnd.2021.0311]
点击复制

冻融-腐蚀复杂环境下圆钢管混凝土轴压性能试验研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年03期
页码:
093-100
栏目:
出版日期:
2021-06-28

文章信息/Info

Title:
Experimental study on axial performance of circular CFST under freeze-thaw and corrosion complex environment
作者:
高山12 张开元1 李捷奇1 许有纯1 王永刚1
1. 西京学院 陕西省混凝土结构安全与耐久性重点实验室, 陕西 西安 710123;
2. 重庆大学 土木工程博士后流动站, 重庆 400045
Author(s):
GAO Shan12 ZHANG Kaiyuan1 LI Jieqi1 XU Youchun1 WANG Yonggang1
1. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China;
2. Postdoctoral Station of Civil Engineering, Chongqing University, Chongqing 400045, China
关键词:
盐雾腐蚀冻融循环圆钢管混凝土轴压性能复杂环境
Keywords:
salt spray corrosionfreeze-thaw cyclesconcrete-filled circular steel tubeaxial performancecomplex environment
分类号:
TU4;X9;X4
DOI:
10.13577/j.jnd.2021.0311
摘要:
为研究在高海拔沿海地区复杂环境作用下钢管混凝土性能的劣化,进行了20个圆钢管混凝土在冻融、盐雾和冻融-盐雾共同作用下的轴压短柱试验,对比了不同冻融次数和腐蚀程度下圆钢管混凝土短柱轴压力学性能。试验结果表明:圆钢管混凝土短柱的轴压承载力与3种环境工况的作用程度均呈线性降低关系。冻融-盐雾共同作用对钢管混凝土峰值荷载的影响要小于冻融循环和盐雾腐蚀单独作用的叠加。3种环境工况作用程度与试件的峰值位移并无明显关系,但会降低其延性系数。冻融-盐雾共同作用时,约束系数变化不明显,这是由于外钢管和核心混凝土存在组合作用,可以有效的减弱由环境因素带来的性能劣化。所提出的考虑冻融循环和盐雾腐蚀影响的圆钢管混凝土短柱承载力计算公式与试验结果吻合良好。
Abstract:
In order to study the performance degradation of concrete-filled steel tube (CFST) under complex environment in high-latitude offshore region, 20 specimens of circular CFST stub column were tested under axial compression after freeze-thaw cycles, salt spray corrosion and the combination of freeze-thaw and salt spray corrosion. The influence of corrosion rate and freeze-thaw cycle was both considered in the design of tests. The axial performance of circular concrete-filled circular steel tubular stub column under various environmental conditions was analyzed. The results show that the axial strength of the specimens decreases linearly with the increase of environmental effects. The effect of the combination of freeze-thaw cycle and salt spray corrosion is less than the simple superposition of the effect of freeze-thaw cycle and the effect of salt spray corrosion. Three environmental conditions have little effect on the ultimate displacement, but reduce the ductility index of the specimens. The confinement index would not be affected remarkably by the combination of freeze-thaw cycle and salt spray corrosion. It could be explained by the fact that the composition interaction between outer steel tube and core concrete would weaken the performance degradation due to environmental effects. The results from the proposed strength prediction formula for circular CFST stub column match well with the experimental results.

参考文献/References:

[1] 吕学涛, 杨华, 张素梅. 接触热阻对火灾下组合结构构件截面温度场的影响[J]. 自然灾害学报, 2011, 20(5):111-118. LV Xuetao, YANG Hua, ZHANG Sumei. Effect of thermal contact resistance on cross-sectional temperature distributions of composite structural members during fire exposure[J]. Journal of Natural Disasters, 2011, 20(5):111-118.(in Chinese)
[2] 吕学涛, 杨华, 张素梅. 三面受火的方钢管混凝土柱耐火极限[J]. 自然灾害学报, 2012, 21(3):198-203. LV Xuetao, YANG Hua, ZHANG Sumei. Fire resistance limit of concrete-filled square steel tube columns exposed to three-faced fire[J]. Journal of Natural Disasters, 2012, 21(3):198-203.(in Chinese)
[3] 郑山锁, 王晓飞, 韩言召, 等. 酸性大气环境下多龄期钢框架柱抗震性能试验研究[J]. 土木工程学报, 2015, 48(8):47-59. ZHENG Shansuo, WANG Xiaofei, HAN Yanzhao. Experimental research on seismic behavior of multi-aged steel frame columns under acidic atmospheric environment[J]. China Civil Engineering Journal, 2015, 48(8):47-59.(in Chinese)
[4] 王甲春, 阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报(工学版), 2014, 44(2):352-357. WANG Jiachun, YAN Peiyu. Probabilistic analysis of rebar rust in concrete under marine environment[J]. Journal of Jilin Univeristy (Engineering and Technology Edition), 2014, 44(2):352-357.(in Chinese)
[5] Han Linhai, Hou Chuanchuan, Wang Qingli. Square concrete filled steel tubular (CFST) members under loading and chloride corrosion:experiments[J]. Journal of Constructional Steel Research, 2012, 71(1):11-25.
[6] Han Linhai, Hou Chuanchuan, Wang Qingli. Behavior of circular CFST stub columns under sustained load and chloride corrosion[J]. Journal of Constructional Steel Research, 2014, 103:23-36.
[7] 花幼星, 侯超, 韩林海. 氯离子腐蚀环境下钢管混凝土轴拉构件受力性能研究[J]. 工程力学, 2015, 32(增):149-152. HUA Youxing, HOU Chao, HAN Linhai. Behavior of CFST tensile memebers subjected to chloride corrosion[J]. Engineering Mechanics, 2015, 32(S):149-152.(in Chinese)
[8] 王庆利, 冯立明, 屈绍娥. 圆钢管混凝土轴压短柱在长期荷载-氯盐腐蚀耦合作用下的试验研究[J]. 土木工程学报, 2015, 48(增1):48-52. WANG Qingli, FENG Liming, QU Shaoe. Experimental study on axially compressed circular concrete-filled steel tubular stub columns under long-term coupling effects of loading and chloride corrosion[J]. China Civil Engineering Journal, 2015, 48(S1):48-52.(in Chinese)
[9] 陈梦成, 林博洋, 黄宏. 锈蚀圆钢管混凝土短柱轴压承载力研究[J]. 建筑钢结构进展, 2018, 20(1):73-81. CHEN Mengcheng, LIN Boyang, HUANG Hong. Research on the bearing capacity of corroded circular concrete filled steel tubular short columns[J]. Progress in Steel Building Structures, 2018, 20(1):73-81.(in Chinese)
[10] Yang Youfu, Cao Kai, Wang Tianzheng. Experimental behavior of CFST stub columns after being exposed to freezing and thawing[J]. Cold Regions Science and Technology, 2013, 89:7-21.
[11] 杨有福, 曹凯, 杨志泉, 等. 冻融循环作用后钢管混凝土轴压短柱力学性能[J]. 中国公路学报, 2014, 27(3):51-58. YANG Youfu, CAO Kai, YANG Zhiquan, et al. Mechnical properties of concrete-filled steel tubular stubs ater freezing and thawing cycles under axial loading[J]. China Journal of Highway and Transport, 2014, 27(3):51-58.(in Chinese)
[12] 沈小盛, 张晓勇, 方焰, 等. 冻融循环后圆钢管混凝土短柱轴压性能试验研究[J]. 建筑结构学报, 2019, 40(5):105-114. SHEN Xiaosheng, ZHANG Xiaoyong, FANG Yan, et al. Experimental research on axial compression behavior of circular CFST short columns after freeze-thaw cycles[J]. Journal of Building Structures, 2019, 40(5):105-114.(in Chinese)
[13] 徐蕾, 孙战伟, 王文达.内配圆钢管的SRC轴心受压短柱的力学性能[J].自然灾害学报, 2013, 22(3):205-212. XU Lei, SUN Zhanwei,WANG Wenda. Mechanical behavior of axial compression steel reinforced concrete stub with inner circular steel tube[J]. Journal of Natural Disasters, 2013, 22(3):205-212.(in Chinese)
[14] 何益斌, 肖阿林, 郭健,等.钢骨-钢管自密实高强混凝土轴压短柱承载力——试验研究[J].自然灾害学报, 2010, 19(4):29-33. HE Yibin, XIAO Alin, GUO Jian, et al. Bearing capacity of stub columns composed of structural steel and self-compacting high-strength concrete-filled steel tube:experimental research[J]. Journal of Natural Disasters, 2010, 19(4):29-33.(in Chinese)
[15] 王新堂, 周明, 王万祯. 钢管陶粒混凝土柱火灾后轴压性能试验研究[J].自然灾害学报, 2012, 21(3):191-197. WANG Xintang, ZHOU Ming, WANG Wanzhen. Experimental study of post-fire axial compressive behavior of ceramsite concrete filled steel tubular columns[J]. Journal of Natural Disasters, 2012, 21(3):191-197.(in Chinese)

相似文献/References:

[1]曹万林,梁梦彬,董宏英,等.再生混凝土冻融后基本力学性能试验研究[J].自然灾害学报,2012,21(03):184.
 CAO Wanlin,LIANG Mengbin,DONG Hongying,et al.Experimental study on basic mechanical properties of recycled concrete after freeze-thaw cycles[J].,2012,21(03):184.
[2]林迟,欧进萍.基于结构全寿命设计需求的冻融作用谱模型与参数[J].自然灾害学报,2013,22(04):001.
 LIN Chi,OU Jinping.Model and parameters of freeze-thaw action spectrum for the needs of structural life-cycle design[J].,2013,22(03):001.
[3]张茂花,李雪成.冻融环境下纳米基础混凝土的抗硫酸盐侵蚀性能[J].自然灾害学报,2018,27(02):094.[doi:10.13577/j.jnd.2018.0211]
 ZHANG Maohua,LI Xuecheng.Sulfate corrosion resistance of foundation concrete with nano-particles under freeze-thaw cycles[J].,2018,27(03):094.[doi:10.13577/j.jnd.2018.0211]
[4]寇佳亮,张亚茹,张晶.冻融循环后高延性混凝土疲劳性能试验及S-N曲线研究[J].自然灾害学报,2019,28(05):075.[doi:10.13577/j.jnd.2019.0509]
 KOU Jialiang,ZHANG Yaru,ZHANG Jing.Experimental study on fatigue property and S-N curve of high ductile fiber concrete under freeze-thaw cycles[J].,2019,28(03):075.[doi:10.13577/j.jnd.2019.0509]
[5]杨晓明,孙国君.除冰盐环境下混凝土冻融损伤深度的试验研究[J].自然灾害学报,2020,29(01):049.[doi:10.13577/j.jnd.2020.0105]
 YANG Xiaoming,SUN Guojun.Experimental study on the damage depth of concrete under freeze-thaw cycles with de-icing salt[J].,2020,29(03):049.[doi:10.13577/j.jnd.2020.0105]

备注/Memo

备注/Memo:
收稿日期:2020-10-11;改回日期:2020-12-02。
基金项目:国家自然科学基金项目(51908085);重庆市自然科学基金(CSTC2020JCYJ-MSXMX0010);中央高校基本科研业务费(2020CDJ-LHZZ-013)
作者简介:高山(1985-),男,副教授,博士,主要从事复杂环境下组合结构性能研究.E-mail:gaoshan@xijing.edu.cn
更新日期/Last Update: 1900-01-01