[1]薄景山,李琪,孙强强,等.场地分类研究现状及有关问题的讨论[J].自然灾害学报,2021,30(03):001-13.[doi:10.13577/j.jnd.2021.0301]
 BO Jingshan,LI Qi,SUN Qiangqiang,et al.Site classification research status and discussion of related issues[J].,2021,30(03):001-13.[doi:10.13577/j.jnd.2021.0301]
点击复制

场地分类研究现状及有关问题的讨论
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年03期
页码:
001-13
栏目:
出版日期:
2021-06-28

文章信息/Info

Title:
Site classification research status and discussion of related issues
作者:
薄景山12 李琪1 孙强强3 彭达4 李孝波2
1. 中国地震局工程力学研究所, 中国地震局地震工程工程振动重点实验室, 黑龙江 哈尔滨 150080;
2. 防灾科技学院, 中国地震局建筑物破坏机理与防御重点实验室, 河北 三河 065201;
3. 格勒诺布尔-阿尔卑斯大学3SR实验室, 法国 格勒诺布尔 38400;
4. 辛辛那提大学, 土木与建筑工程管理系, 俄亥俄州 辛辛那提市 45221
Author(s):
BO Jingshan12 LI Qi1 SUN Qiangqiang3 PENG Da4 LI Xiaobo2
1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China;
2. Institute of Disaster Prevention, Key Laboratory of Building Collapse Mechanism and Disaster Prevention, China Earthquake Administration, Sanhe 065201, China;
3. Lab 3SR, CNRS, Grenoble Alpes University, Grenoble 38400, France;
4. Department of Civil and Architectural Engineering and Construction Management, University of Cincinnati, Cincinnati 45221, OH, US
关键词:
场地分类分类指标分类方案研究现状对比研究
Keywords:
site classificationclassification indexesclassification schemesresearch statuscomparative study
分类号:
TU4;P315.96;X9
DOI:
10.13577/j.jnd.2021.0301
摘要:
强震观测资料和震害资料表明,场地条件对地震动有着重要的影响。从工程抗震的角度出发,依据场地条件对场地进行分类并规定不同场地的设计地震动参数是目前各国抗震设计规范的通行做法,也是当前岩土工程抗震研究的重要内容。本文对国内外抗震规范中场地分类的研究历程进行了梳理和总结;对场地分类指标进行了分析和评述,并对有代表性的中国、美国、欧洲、日本、土耳其、智利、尼泊尔、伊朗、韩国、澳大利亚和新西兰等国家和地区抗震设计规范中的场地分类方案开展了对比研究。在此基础上,重点讨论了我国现行抗震设计规范中场地分类存在的问题,并提出了这一领域今后需要研究的若干关键问题。本文的工作对从事场地分类研究的科技人员有一定的参考价值。
Abstract:
The site conditions play an important role on ground motion indicated by observed data of strong earthquakes and seismic investigation. Currently it is well recognized around the world for classifying sites according to site conditions and stipulating design ground motion parameters for different sites regarding seismic design code from the perception of engineering seismology, as well as an important research content of earthquake geotechnical engineering. It is reviewed and summarized in the paper for the research process of site classification of the seismic code home and abroad.Meanwhile, analysis and comment are performed for the site classification indexes.In addition, it is launched to review and compare the site classification schemes of different countries by taking the representative ones as China, the United States, Europe, Japan, Turkey, Chile, Nepal, Iran, South Korea, Australia and New Zealand. The keynote is to focus on the problems of site classification in the current seismic design code of China based on this, and proposed several key issues that need to be studied on site classification in the future. The results of these analyses will bring some added value for the reference of researchers who are interested in site classification.

参考文献/References:

[1] 高孟潭. GB18306-2015《中国地震动参数区划图》宣贯教材[M]. 北京:中国质检出版社, 中国标准出版社, 2015:192-195. GAO Mengtan. GB18306-2015《Seismic Ground Motion Parameter Zonation Map of China》Promote Textbooks[M]. Beijing:Quality Inspection Press of China, Standards Press of China, 2015:192-195. (in Chinese)
[2] Wood H.O. Distribution of apparent intensity in San Francisco in the California earthquake of April 18, 1906[R]. Report of the State Earthquake Investigation Commission. Washington, D.C.:Carnegie Institution of Washington Publication, 1908:220-245.
[3] 周锡元.土质条件对建筑物所受地震荷载的影响[J]. 中国科学院工程力学研究所地震工程研究报告集.北京:科学出版社, 1965:27-41. ZHOU Xiyuan. Influence of soil quality on seismic loads of buildings[J]. Chinese Academy of Engineering Mechanics Research Institute of Earthquake Engineering Research Report. Beijing:Science Press, 1965:27-41. (in Chinese)
[4] 蒋莼秋.场地和地基的地震效应概述[J]. 煤矿设计, 1984(3):21-26. JIANG Chunqiu. Overview of the seismic effects of the site and foundation[J]. Coal Mine Design, 1984(3):21-26. (in Chinese)
[5] 薄景山. 场地分类和设计反应谱调整方法研究(博士后研究工作报告)[D]. 哈尔滨:中国地震局工程力学研究所, 1998. BO Jingshan. Site Classification and Design Response Spectrum Adjustment Method[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 1998. (in Chinese)
[6] Hayashi S H, Tsuchida H, Kurata E. Average Response Spectra for Various Subsoil Conditions[A]. Third Joint Meeting, U.S.-Japan Panel on Wind and Seismic Effects[C], UJNR, Tokyo, 1971.
[7] Seed H B, Ugas C, Lysmer J. Site-dependent spectra for earthquake-resistant design[J]. Bulletin of the Seismological Society of America, 1976, 66(1):A103-A103.
[8] ASCE/SEI 7-10. Minimum Design Loads for Buildings and Other Structures[S]. ASCE Standard, American Society of Civil Engineers, Structural Engineering Institute, 2010.
[9] EN-1998-1. Eurocode 8:Design of Structures for Earthquake Resistance-Part 1:General Rules, Seismic Actions and Rules for Buildings[S]. European Committee for Standardization, 2004.
[10] The Building Center of Japan(BCJ), The building standard law of Japan[S]. Tokyo, 2016.
[11] Turkey Regulations for Buildings in Disaster Regions:Specification for Buildings to be Built in Seismic Zones[S]. Disaster and Emergency Management Directorate, 2007.
[12] NCh 2369.of 2003. Earthquake-Resistant Design of Industrial Structures and Facilities[S]. Instituto Nacional de Normalización, 2003.
[13] NBC105 Nepal National Building Code, Seismic Design of Buildings in Nepal[S]. Nepal, Ministry of Housing and Physical Planning, 1995.
[14] Iranian Code for Seismic Resistant Design of Buildings[S]. Iran, Building and Housing Research Center, 1988.
[15] Korean Building code[S]. Ministry of Land, Infrastructure and Transport, 2009.
[16] AS/NZS 1170:2002. Structural Design Actions[S]. Standards Australia/Standards New Zealand, 2002.
[17] 胡聿贤. 地震工程学(第二版)[M]. 北京:地震出版社, 2006:480-482. HU Yuxian. Earthquake Engineering (Second Edition)[M]. Beijing:Seismological Press, 2006:480-482. (in Chinese)
[18] 冶金工业部建筑研究部院工程抗震研究室. 九国抗震设计规范汇编[M]. 北京:地震出版社, 1982:3-289. Engineering Seismic Research Office, Institute of Architectural Research, Ministry of Metallurgical Industry. Compilation of seismic design codes of nine countries[M]. Beijing:Seismological Press, 982:3-289. (in Chinese)
[19] 翁文灏. 民国九年十二月十六日甘肃的地震[J]. 科学, 1922(7):105-114. WENG Wenhao. Earthquake in Gansu on December 16, 1920[J]. Science, 1922(7):105-114. (in Chinese)
[20] 中国科学院土木建筑研究所. 地震区建筑规范(草案)[R]. 哈尔滨:中国科学院土木建筑研究所, 1959:3-4. Institute of Civil Engineering and Architecture, Chinese Academy of Sciences. Building seismic design specifications (draft)[R]. Harbin:Institute of Civil Engineering and Architecture, Chinese Academy of Sciences, 1959:3-4. (in Chinese)
[21] 中国科学院工程力学研究所. 地震区建筑设计规范(草案稿)[R]. 哈尔滨:中国科学院工程力学研究所, 1964:3-33. Institute of Engineering Mechanics, Chinese Academy of Sciences. Code for building design in earthquake zone (draft)[R]. Harbin:Institute of Engineering Mechanics, Chinese Academy of Sciences, 1964:3-33. (in Chinese)
[22] TJ11-74工业与民用建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 1974. TJ11-74 Code for Seismic Design of Industrial and Civil Buildings[S]. Beijing:China Building Industry Press of China, 1974. (in Chinese)
[23] TJ11-78工业与民用建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 1979. TJ11-78 Code for Seismic Design of Industrial and Civil Buildings[S]. Beijing:China Building Industry Press of China, 1979. (in Chinese)
[24] GBJ11-89建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 1989. GBJ11-89 Code for Seismic Design of Buildings[S]. Beijing:China Building Industry Press of China, 1989. (in Chinese)
[25] GB50011-2001建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2001. GB50011-2001 Code for Seismic Design of Buildings[S]. Beijing:Building Industry Press of China, 2001. (in Chinese)
[26] GB50011-2001建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2008. GB50011-2001 Code for Seismic Design of Buildings[S]. Beijing:Building Industry Press of China, 2008. (in Chinese)
[27] GB50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010 Code for Seismic Design of Buildings[S]. Beijing:Building Industry Press of China, 2010. (in Chinese)
[28] GB50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2016. GB50011-2010 Code for Seismic Design of Buildings[S]. Beijing:Building Industry Press of China, 2016. (in Chinese)
[29] Boore D M. Estimating Vs (30) (or NEHRP site classes) from shallow velocity models (depths< 30 m)[J]. Bulletin of the Seismological Society of America, 2004, 94(2):591-597.
[30] Boore D M, Thompson E M, Cadet H. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 meters[J]. Bulletin of the Seismological Society of America, 2011, 101(6):3046-3059.
[31] Domenico Di Giacomo, Maria Rosaria Gallipoli, Marco Mucciarelli, et al. Analysis and Modeling of hvsr in the Presence of a Velocity Inversion:The Case of Venosa, Italy[J]. Geo Science World, 2005, 95(6):2364-2372.
[32] Duhee Park, Youssef M.A. Hashash. Evaluation of seismic site factors in the Mississippi Embayment. II. Probabilistic seismic hazard analysis with nonlinear site effects[J]. Soil Dynamics and Earthquake Engineering, 2004, 25(2):145-156.
[33] Pitilakis K, Riga E, Anastasiadis A. New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database[J]. Bulletin of Earthquake Engineering, 2013, 11(4):925-966.
[34] 陈卓识, 袁晓铭, 孙锐, 等. 土层剪切波速不确定性对场地刚性判断的影响[J]. 岩土力学, 2019, 40(7):2748-2754,2798. CHEN Zhuoshi, YUAN Xiaoming, SUN Rui, et al. Impact of uncertainty in in-situ shear-wave velocity on the judgement of site stiffness[J]. Rock and Soil Mechanics, 2019, 40(7):2748-2754,2798. (in Chinese)
[35] 王琦, 刘红帅, 郑桐, 等. 天津地区覆盖土层剪切波速与埋深的相关性分析[J]. 地震工程与工程振动, 2018, 38(6):190-201. WANG Qi, LIU Hongshuai, ZHENG Tong, et al. Correlation analysis between shear wave velocity and depth of covering soils in Tianjin[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(6):190-201. (in Chinese)
[36] 周锡元, 王广军, 苏经宇. 场地分类和平均反应谱[J]. 岩土工程学报, 1984, 6(5):59-68. ZHOU Xiyuan, WANG Guangjun, SU Jingyu. Venue classification and average response spectrum[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(5):59-68. (in Chinese)
[37] 郭俊平. 模糊综合评判和灰色模式识别在场地分类中的应用[D]. 南宁:广西大学, 2003. GUO Junpin. Application of Fuzzy Comprehensive Evaluation Method and Grey Pattern Recognition in Site Classification[D]. Nanning:Guangxi University, 2003. (in Chinese)
[38] 李敏. 考虑场地地震动影响的场地分类方法研究[D]. 中国地震局地球物理研究所, 2015. LI Min. Study on the Site Classification Method Based on Seismic Site Effects[D]. Institute of Geophysics, China Earthquake Administration, 2015. (in Chinese)
[39] 窦立军, 杨柏坡. 场地分类新方法的研究[J]. 地震工程与工程振动, 2001, 21(4):10-17. DOU Lijun, YANG Bopo. Research on new method of site classification[J]. Earthquake Engineering and Engineering Dynamics, 2001, 21(4):10-17. (in Chinese)
[40] 黄雅虹, 吕悦军, 彭艳菊. 国内外不同抗震设计规范中场地分类方法的内在关系研究[J]. 震灾防御技术, 2009, 4(1):80-90. HUANG Yahong, LV Yuejun, PENG Yanju. Study on the relations of site classification methods in seismic design standards between China and abroad[J]. Technology for Earthquake Disaster Prevention, 2009, 4(1):80-90. (in Chinese)
[41] 张凤涛. 中国欧洲美国抗震设计规范场地分类对比研究[J]. 铁道勘察, 2019, 45(2):68-72. ZHANG Fengtao. Comparative study on site classification between Chinese, European and American codes of seismic design[J], 2019, 45(2):68-72. (in Chinese)
[42] 邱志刚, 薄景山, 罗奇峰. 土壤剪切波速与标贯击数关系的统计分析[J]. 自然灾害学报, 2012, 21(2):102-107. QIU Zhigang, BO Jingshan, LU Qifeng. Statistical analysis of relationship between shear wave velocity and standard penetration test blow count[J]. Journal of Natural Disasters, 2012, 21(2):102-107.
[43] 胡聿贤, 孙平善, 章在墉, 等. 场地条件对震害和地震动的影响[J]. 地震工程与工程振动, 1980(0):34-41. HU Yuxian, SUN Pingshan, ZHANG Zaiyong, et al. Effect of site conditions on earthquake damage and ground motion[J]. Earthquake Engineering and Engineering Dynamics, 1980(0):34-41. (in Chinese)
[44] 薄景山, 李秀领, 刘德东, 等. 土层结构对反应谱平台值的影响[J]. 地震工程与工程振动, 2003, 23(4):29-33. BO Jingshan, LI Xiuling, LIU Dedong, et al. Effects of soil layer construction on platform value of response spectra[J]. Earthquake Engineering and Engineering Dynamics, 2003, 23(4):29-33. (in Chinese)
[45] 薄景山, 李秀领, 刘德东, 等. 土层结构对反应谱特征周期的影响[J]. 地震工程与工程振动, 2003, 23(5):42-45. BO Jingshan, LI Xiuling, LIU Dedong, et al. Effects of soil layer construction on characteristic periods of response spectra[J]. Earthquake Engineering and Engineering Dynamics, 2003, 23(5):42-45. (in Chinese)
[46] 薄景山, 李秀领, 刘红帅. 土层结构对地表加速度峰值的影响[J]. 地震工程与工程振动, 2003, 23(3):35-40. BO Jingshan, LI Xiuling, LIU Hongshuai. Effects of soil layer construction on peak accelerations of ground motions[J]. Earthquake Engineering and Engineering Dynamics, 2003, 23(3):35-40. (in Chinese)
[47] 薄景山, 翟庆生, 刘红帅, 等. 场地分类及其在我国的演变[J]. 自然灾害学报, 2004, 13(3):44-49. BO Jingshan, ZHAI Qingsheng, LIU Hongshuai, et al. Site classification and its evolution in Chinese code for seismic design of buildings[J]. Journal of Natural Disasters, 2004, 13(3):44-49.
[48] 贺传松, 周正华, 李山有. 场地组合土对输入地震动的影响[J]. 东北地震研究, 1999, 15(1):53-58. HE Chuansong, ZHOU Zhenghua, LI Shanyou. Effect of site composite soil on input ground motion[J]. Seismological Research of Northeast China, 1999, 15(1):53-58. (in Chinese)
[49] 翟庆生. 基于土层结构的场地分类方法的研究[D]. 哈尔滨:中国地震局工程力学研究所, 2003. ZHAI Qingsheng. Study on the method of Site Classification Based on Soil Layer Structure Construction[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2003. (in Chinese)
[50] 王会娟, 王平, 于一帆, 等. 复杂土层结构黄土场地地震动反应特性[J]. 自然灾害学报, 2018, 27(6):75-82. WANG Huijuan, WANG Ping, YU Yifan, et al. The effect of complex soil structure loess field on earthquake ground motion[J]. Journal of Natural Disasters, 2018, 27(6):75-82.
[51] 齐文浩, 薄景山, 刘红帅. 水平成层场地基本周期的估算公式[J]. 岩土工程学报, 2013, 35(4):779-784. QI Wenhao, BO Jingshan, LIU Hongshuai. Fundamental period formula for horizontal layered soil profiles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4):779-784. (in Chinese)
[52] 齐文浩, 薄景山, 阮璠, 等. 中国场地分类方法的一种改进方案[J]. 自然灾害学报, 2015, 24(1):234-238. QI Wenhao, BO Jingshan, RUAN Fan, et al. Improvement on current site classification in China[J]. Journal of Natural Disasters, 2015, 24(1):234-238. (in Chinese)
[53] 齐文浩, 刘红帅, 薄景山. 场地分类的新指标——土层等效周期[J]. 地震工程与工程振动, 2013, 33(6):228-235. QI Wenhao, LIU Hongshuai, BO Jingshan. A new site classification index:equivalent period of soil layer[J]. Earthquake Engineering and Engineering Dynamics, 2013, 33(6):228-235. (in Chinese)
[54] 王竞, 齐文浩, 薄景山, 等. 两种表层土剪切波速等效方法对比研究[J]. 地震工程与工程振动, 2018, 38(2):141-149. WANG Jing, QI Wenhao, BO Jingshan, et al. Comparison study of two methods to determine the equivalent shear wave velocity of topsoil[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(2):141-149. (in Chinese)
[55] 王竞. 考虑土层结构影响的场地分类方法研究[D]. 中国地震局工程力学研究所, 2018. WANG Jing. Study on Site Classification Method Considering the Influence of Soil Structure[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2018. (in Chinese)
[56] 薄景山, 李秀领, 李山有. 场地条件对地震动影响研究的若干进展[J]. 世界地震工程, 2003, 19(2):11-15. BO Jingshan, LI Xiuling, LI Shanyou. Some progress of study on the effect of site conditions on ground motion[J]. World Earthquake Engineering, 2003, 19(2):11-15. (in Chinese)
[57] MingWey Huang, JeenHwa Wang, Kuo Fong, et al. Frequency-dependent site amplifications with f ≥ 0.01 Hz evaluated from velocity and density models in central Taiwan[J]. Geo Science World, 2007, 97(2):624-637.
[58] David M. Boore. Estimating Vˉs(30) (or NEHRP Site Classes) from Shallow Velocity Models (Depths ?30 m)[J]. Geo Science World, 2004, 94(2):591-597.
[59] ChunHsiang Kuo, KuoLiang Wen, HungHao, et al. Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3):431-439.
[60] David M. Boore, Eric M. Thompson, Hélo?e Cadet. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 meters[J]. Geo Science World, 2011, 101(6):3046-3059.
[61] Zhijun Dai, Xiaojun Li, Chunlin Hou. A Shear-Wave velocity model for VS30 estimation based on a conditional independence property[J]. Geo Science World, 2013, 103(6):3354-3361.
[62] Wang H Y, Wang S Y. A New Method for Estimating VS (30) from a Shallow Shear-Wave Velocity Profile (Depth< 30 m)[J]. Bulletin of the Seismological Society of America, 2015, 105(3):68-73.
[63] 郭锋. 抗震设计中有关场地的若干问题研究[D]. 武汉:华中科技大学, 2010. GUO Feng. Research on Some Issues of Site for Seismic Design[D]. Wuhan:Huazhong University of Science and Technology, 2010.(in Chinese)

相似文献/References:

[1]齐文浩,薄景山,阮璠,等.中国场地分类方法的一种改进方案[J].自然灾害学报,2015,24(01):234.[doi:10.13577/j.jnd.2015.0129]
 QI Wenhao,BO Jingshan,RUAN Fan,et al.Improvement on current site classification in China[J].,2015,24(03):234.[doi:10.13577/j.jnd.2015.0129]

备注/Memo

备注/Memo:
收稿日期:2020-09-24;改回日期:2020-12-09。
基金项目:国家自然科学基金重大项目(U1939209);中国地震局重大政策理论与实践问题研究课题(CEAZY2020JZ07);中国地震局地震工程与工程振动重点实验室重点专项(2020EEEVL0201);中国地震局建筑物破坏机理与防御重点实验室开放基金项目(FZ201101)
作者简介:薄景山(1957-),男,教授,博士生导师,主要从事岩土工程抗震研究.E-mail:bojingshan@163.com
通讯作者:李琪(1996-),女,博士研究生,主要从事场地分类和岩土工程抗震方面的研究.E-mail:liqilq96@163.com
更新日期/Last Update: 1900-01-01