[1]张菊,郭晓军,陈廷芳,等.汶川地震灾区小流域洪水计算方法初探[J].自然灾害学报,2021,30(01):155-164.[doi:10.13577/j.jnd.2021.0116]
 ZHANG Ju,GUO Xiaojun,CHEN Tingfang,et al.Study on the discharge calculation in small watershed in Wenchuan earthquake area[J].,2021,30(01):155-164.[doi:10.13577/j.jnd.2021.0116]
点击复制

汶川地震灾区小流域洪水计算方法初探
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年01期
页码:
155-164
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Study on the discharge calculation in small watershed in Wenchuan earthquake area
作者:
张菊1 郭晓军23 陈廷芳1 陈兴长1 孙聿卿1 李松1
1. 西南科技大学 环境与资源学院, 四川 绵阳 621010;
2. 中国科学院山地灾害与地表过程重点实验室/中国科学院、水利部成都山地灾害与环境研究所, 四川 成都 610041;
3. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101
Author(s):
ZHANG Ju1 GUO Xiaojun23 CHEN Tingfang1 CHEN Xingchang1 SUN Yuqing1 LI Song1
1. School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China;
2. Key Laboratory of Mountain Hazards and Surface Process/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
关键词:
SCS曲线法坡面产流沟道汇流峰值流量峰现时间汶川地震灾区
Keywords:
SCS Curve Numberslope runoffchannel confluencepeak dischargepeak occurrence timeWenchuan Earthquake area
分类号:
P694;X43;X9
DOI:
10.13577/j.jnd.2021.0116
摘要:
汶川地震灾区小流域山洪不仅造成巨大损失,同时也是泥石流等灾害的激发因素,探寻一种准确且可操作的洪水峰值流量计算方法对防灾减灾具有重要意义。本文选择不同产流和汇流计算方法,组合成不同水文模型,进行小流域洪水过程计算,对模拟结果和参数选择进行对比,旨在探究最适合该地区的小流域水文计算方法。分别选择SCS曲线法、Green-Ampt入渗法、初损稳渗法进行坡面产流计算,应用SCS单位线法、Snyder单位线法和运动波方程进行坡面和沟道汇流计算,组合成5种小流域产汇流计算模型,利用6场洪水进行参数率定和结果验证。模拟结果对比分析,得出SCS曲线法是最适宜的产流模型,其与SCS单位线、运动波汇流计算方法组合而成的SCS和SKK模型,峰现时间的模拟误差最小,在0~25 min之间;洪峰流量模拟的相对误差较小,平均误差不超过4%;洪水总量模拟误差在10%左右。另外,这两种模型参数设置及确定较简单,更适合在数据稀缺的小流域中进行洪水模拟应用。研究可为汶川地震灾区小流域山洪和泥石流等灾害的流量估算提供方法和参数借鉴。
Abstract:
Mountain torrents not only cause huge losses, but also are the inducing factors for debris flows in small watersheds in the Wenchuan earthquake-stricken area. It is of great significance to find an accurate and operable method for calculating the flood discharge for disaster mitigation. This work aims to investigate the efficiency of different hydrological models which are commonly used, and to find the most proper methods for peak discharge calculation. The methods selected for slope runoff yield calculation include the SCS Curve Number method, Green-Ampt method and the Initial and Constant method, and methods for influx process include SCS Unit Hydrograph method, Snyder Unit Hydrograph and Kinematic Wave method. Five models are built and the simulation results are investigated. It is found that the SCS Curve Number method is the most suitable model for runoff yield calculation. The models which are combined it with the SCS Unit Hydrograph method, and the Kinematic Wave method, simulate the peak appearance time most accurately with the error range of 0-25 min, and the relative errors of peak discharge and total volume are smaller than 4% and about 10%, respectively. In addition, the parameters of the two models are determined simply, and are more suitable for flood simulation in small watersheds with scarce data. The research can provide methods for the flow estimation in the small watershed of the Wenchuan earthquake area.

参考文献/References:

[1] 邹强, 郭晓军, 朱兴华,等. 岷江上游"7·10"泥石流对公路的危害方式及成因[J]. 山地学报, 2014, 32(6):747-753. ZOU Qiang, GUO Xiaojun, ZHU Xinghua, et al. Hazard characteristics and causes of "7·10" debris flow along highways in the upper reaches of Minjiang river[J]. Mountain Research, 2014, 32(6):747-753. (in Chinese)
[2] Cui P, Guo XJ, Yan Y, et al. Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area[J]. Geomorphology, 2018, 321(15):153-166.
[3] 胡国华, 陈肖, 于泽兴,等. 基于HEC-HMS的郴江流域山洪预报研究[J]. 自然灾害学报, 2017, 26(3):147-155. HU Guohua, CHEN Xiao, YU Zexing, et al. Research on forecast of mountain flood in Chenjiang River Basin based on HEC-HMS model[J]. Journal of Natural Disasters, 2017, 26(3):147-155. (in Chinese)
[4] Guo XJ, Cui P, Li Y, et al, The formation and development of debris flows in large watersheds after the 2008 Wenchuan Earthquake[J]. Landslides, 2016, 13(1):25-37.
[5] 江净超, 朱阿兴, 秦承志,等. 分布式水文模型软件系统研究综述[J]. 地理科学进展, 2014, 33(8):1090-1100. JIANG Jingchao, ZHU Axing, QIN Chengzhi, et al. Review on distributed hydrological modelling software systems[J]. Progress in Geography, 2014, 33(8):1090-1100. (in Chinese)
[6] 卢燕宇, 谢五三, 田红. 基于水文模型与统计方法的中小河流致洪临界雨量分析[J]. 自然灾害学报,2016, 25(3):38-47. LU Yanyu, XIE Wusan, TIAN Hong. Analysis of critical flood causing rainfalls in medium and small rivers based on hydrological model and statistical method[J]. Journal of Natural Disasters, 2016, 25(3):38-47. (in Chinese)
[7] 刘昌明, 白鹏, 张丹,等. 基于HIMS的稀缺资料地区径流估算[C]//中国水文科技新发展——2012中国水文学术讨论会论文集, 2012:525-530. LIU Changming, BAI Peng, ZHANG Dan, et al. Regional runoff estimation of scarce data based on HIMS[C]//New development of Chinese hydrological science and technology——Proceedings of 2012 Chinese hydrological symposium, 2012, 525-530. (in Chinese)
[8] 李海兵, 王宗秀, 付小方,等. 2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征[J]. 中国地质, 2008, 035(005):803-813. LI Haibing, WANG Zongxiu, FU Xiaofang, et al. The surface rupture zone distribution of the Wenchuan earthquake(Ms8.0) happened on May 12th, 2008[J]. Geology in China, 2008, 035(005):803-813. (in Chinese)
[9] Syed AU-R. Hydrologic Analysis of a Semi-arid Watershed Using Kinematic Wave and SCS Flow Models[D]. Michigan State University, 2012.
[10] US Army CorpsOf Engineers. Hydrologic Modeling System HEC-HMS[M]. American:Hydrologic Engineering Center, 2009:51-291.
[11] 万荣荣, 杨桂山, 李恒鹏. 流域土地利用/覆被变化的洪水响应——以太湖上游西苕溪流域为例[J]. 自然灾害学报, 2008, 17(3):10-15. WAN Rongrong, YANG Guishan, LI Hengpeng. Flood response to land-use and land-use change:a case study of the Xitiao Rivulet Basin in the upper reaches of the Taihu Lake[J]. Journal of Natural Disasters, 2008, 17(3):10-15. (in Chinese)
[12] USDA. Soil Conservation Service National Engineering Handbook, Section 4:Hydrology[M]. Washington DC, 1985.
[13] Heber Green W, Ampt G A. Studies on Soil Phyics[J]. Journal of Agricultural Science, 1911, 4(1):1-24.
[14] USAGE. Flood-runoff Analysis[M]. EM 1110-2-1417, Office of Chief of Engineers, Washington DC, 1994.
[15] Mccuen RH. A Guide to Hydrologic Analysis Using the SCS Methods[M]. Englewood Cliffs, NJ, 1982.
[16] 雍斌, 张万昌, 赵登忠,等. HEC-HMS水文模型系统在汉江褒河流域的应用研究[J]. 水土保持通报, 2006(3):86-90. YONG Bin, ZHANG Wanchang, ZHAO Dengzhong, et al. Application of hydrological modeling system HEC-HMS to Baohe Catchment of Hanjiang Basin[J]. Bulletin of Soil and Water Conservation, 2006(3):86-90. (in Chinese)
[17] Lighthill M J, Whitham G B. On Kinematic Waves. I. Flood movement in long rivers[J]. Proceedings of the Royal Society A, 1955, 229(1178):281-316.
[18] Pedescoll A, Uggetti E, Llorens E, et al. Practical method based on saturated hydraulic conductivity used to assess clogging in subsurface flow constructed wetlands[J]. Ecological Engineering, 2009, 35(8):1216-1224.
[19] 魏文秋, 谢淑琴. 遥感资料在SCS模型产流计算中的应用[J]. 环境遥感, 1992(4):243-250. WEI Wenqiu, XIE Shuqin. The application of remote sensing in runoff formation in SCS model[J]. Remote Sensing of Environment Chana, 1992(4):243-250. (in Chinese)
[20] Brakensiek D L. Estimating the effective capillary pressure in the Green and Ampt infiltration equation[J]. Water Resources Research, 1977, 13(3):680-682.
[21] 杨凯. HEC-HMS水文模型及其在洪安涧河流域的适用性研究[D]. 华北水利水电大学, 2018. YANG Kai. HEC-HMSHydrological Model and Its Applicability in Honganjian River Basin[D]. North China University of Water Resources and Electric Power, 2018. (in Chinese)
[22] 王江婷. 基于HEC-HMS模型的北方典型小流域山洪预警模拟与研究[D].济南大学,2018. WANG Jiangting. Simulation and Research of Mountain Flood Early Warning in Typical Small Watershed in North China Based on HEC-HMS Model[D]. University of Jinan, 2018. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2020-07-05;改回日期:2020-08-31。
基金项目:国家重点研发计划(2020YFD1100701,2017YFC1502504);国家自然科学基金项目(41977257)
作者简介:张菊(1995-),女,硕士研究生,从事工程地质和灾害地质方面的研究.E-mail:zoe950826@163.com
通讯作者:郭晓军(1985-),男,副研究员,主要从事泥石流灾害研究.E-mail:aaronguo@imde.ac.cn
更新日期/Last Update: 1900-01-01