XIAO Yuanhao,ZHAO Xudong,ZHU Lihong,et al.Research on the resilience of electricity-gas related lifeline network under earthquake disasters[J].,2021,30(01):132-140.[doi:10.13577/j.jnd.2021.0114]





Research on the resilience of electricity-gas related lifeline network under earthquake disasters
肖元昊1 赵旭东1 朱丽虹2 陈顺1
1. 陆军工程大学 爆炸冲击防灾减灾国家重点实验室, 江苏 南京 210007;
2. 河海大学 水文水资源学院, 江苏 南京 210098
XIAO Yuanhao1 ZHAO Xudong1 ZHU Lihong2 CHEN Shun1
1. State Key Laboratory of Explosion & Impact and Disaster Prevention & Mitigation, Army Engineering University of PLA, Nanjing 210007, China;
2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
resilienceinterdependentearthquakelifelinepower networkgas network
It is critical to conduct research on the resilience of related lifeline networks, as various lifeline networks are increasingly closely related. This article aims to build a framework for assessing the resilience of urban electricity-gas related lifeline networks based on the earthquake disaster. A performance response function (PRF) considering the functional characteristics of the power and gas network will be conducted by analyzing the power flow and natural gas steady-state simulation. In the meanwhile, taking the interdependent IEEE 30-bus network and Belgium 20-node gas network as cases combined with the evaluation framework, the changes of network resilience under different recovery budgets and recovery resources are analyzed. This analysis provides a basis for the optimal allocation of resources and supports the construction of a "resilient city".


[1] Kobayashi M. Experience of infrastructure damage caused by the great east Japan earthquake and countermeasures against future disasters[J]. IEEE Communications Magazine, 2014, 52(3):23-29.
[2] Yeh H, Sato S, Tajima Y. The 11 march 2011 east Japan earthquake and tsunami:Tsunami effects on coastal infrastructure and buildings[J]. Pure and Applied Geophysics, 2013, 170(6):1019-1031.
[3] Hossain A, Adhikari T L, Ansary M A, et al. Characteristics and consequence of Nepal earthquake 2015:A review[J]. Geotechnical Engineering, 2015, 46(4):114-120.
[4] Paulik R, Gusman A, Williams J H, et al. Tsunami hazard and built environment damage observations from Palu city after the September 282018 Sulawesi earthquake and tsunami[J]. Pure and Applied Geophysics, 2019, 176(8):3305-3321.
[5] 韩超, 丁志锋, 王越, 等. 长持时强震对电力基础设施的致灾影响[J]. 自然灾害学报, 2018, 27(6):83-90. HAN Chao, DING Zhifeng, WANG Yue, et al. Disaster characteristics of long duration ground motion and its effects on electric power facilities[J]. Journal of Natural Disasters, 2018, 27(6):83-90. (in Chinese)
[6] Gautam D, Dong Y. Multi-hazard vulnerability of structures and lifelines due to the 2015 Gorkha earthquake and 2017 central Nepal flash flood[J]. Journal of Building Engineering, 2018, 17:196-201.
[7] Pitilakis K, Alexoudi M, Argyroudis S, et al. Earthquake risk assessment of lifelines[J]. Bulletin of Earthquake Engineering, 2006, 4(4):365-390.
[8] Selcuk-Kestel A S, Duzgun H S, Oduncuoglu L. A GIS-based software for lifeline reliability analysis under seismic hazard[J]. Computers & Geosciences, 2012, 42(4):37-46.
[9] 操铮, 刘茂, 许同生. 城市生命线系统的地震网络可靠性研究[J]. 自然灾害学报, 2011, 20(6):32-39. CAO Zheng, LIU Mao, XU Tongsheng. Research on seismic network reliability of urban lifelines system[J]. Journal of Natural Disasters, 2011, 20(6):32-39. (in Chinese)
[10] 钱保国, 叶志明, 陈玲俐, 等. 生命线工程网络系统抗震可靠性分析方法综述[J]. 自然灾害学报, 2010, 19(1):122-126. QIAN Baoguo, YE Zhiming, CHEN Lingli, et al. Summary of analysis method for seismic reliability of lifeline network system[J]. Journal of Natural Disasters, 2010, 19(1):122-126. (in Chinese)
[11] 杨静, 李大鹏, 翟长海, 等. 城市抗震韧性的研究现状及关键科学问题[J].中国科学基金, 2019, 33(5):525-532. YANG Jing, LI Dapeng, ZHAI Changhai, et al. Key scientific issues in the urban earthquake resilience[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(5):525-532. (in Chinese)
[12] 赵旭东, 陈志龙, 龚华栋, 等. 关键基础设施体系灾害毁伤恢复力研究综述[J]. 土木工程学报, 2017, 50(12):62-71. ZHAO Xudong, CHEN Zhilong, GONG Huadong, et al. Review on the study of disaster resilience of critical infrastructure systems[J]. China Civil Engineering Journal, 2017, 50(12):62-71. (in Chinese)
[13] 费璇,温家洪,杜士强, 等. 自然灾害恢复力研究进展[J]. 自然灾害学报, 2014, 23(6):19-31. FEI Xuan, WEN Jiahong, DU Shiqiang, et al. Progress in research on natural disaster resilience[J]. Journal of Natural Disasters, 2014, 23(6):19-31. (in Chinese)
[14] Alexander D E. Resilience and disaster risk reduction:an etymological journey[J]. Natural Hazards and Earth System Sciences, 2013, 13(11):2707-2716.
[15] Ouyang M, Duenas-Osorio L. Multi-dimensional hurricane resilience assessment of electric power systems[J]. Structural Safety, 2014, 48:15-24.
[16] Cimellaro G P, De Stefano A, Villa O. Serviceability of natural gas distribution networks after earthquakes[J]. Journal of Earthquake and Tsunami, 2013, 7(2):1350005.
[17] Espinoza S, Panteli M, Mancarella P, et al. Multi-phase assessment and adaptation of power systems resilience to natural hazards[J]. Electric Power Systems Research, 2016, 136:352-361.
[18] GB18306-2015中国地震动参数区划图[S]. 北京:中国国家标准化管理委员会, 2015. GB18306-2015 Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing:Standardization Administration, 2015. (in Chinese)
[19] United States Department of Homeland Security, Federal Emergency Management Agency. Multi-hazard loss estimation methodology, earthquake model (HAZUS-MH MR4)[M]. Washington:Federal Emergency Management Agency, 2003.
[20] Duenas-Osorio L, Craig J I, Goodno B J, et al. Interdependent response of networked systems[J]. Journal of Infrastructure Systems, 2007, 13(3):185-194.
[21] Duenas-Osorio L, James I C, Barry J G. Seismic response of critical interdependent networks[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(2):285-306.
[22] Ouyang M, Hong L, Mao Z J, et al. A methodological approach to analyze vulnerability of interdependent infrastructures[J]. Simulation Modeling Practice and Theory, 2009, 17(5):817-828.
[23] 胡文曦, 肖先勇. 电网结构对电压暂降传播的影响及其量化分析方法[J]. 电力自动化设备, 2020, 40(7):181-189. HU Wenxi, XIAO Xianyong. Influence of grid structure on voltage sag propagation and its quantitative analysis method[J]. Electric Power Automation Equipment, 2020, 40(7):181-189. (in Chinese)
[24] Wolf D D, Smeers Y. The gas transmission problem solved by an extension of the simplex algorithm[J]. Management Science, 2000, 46(11):1454-1465.


 WAN Wen-bo,GE Yi,BI Jun,et al.Research advance in disaster resilience:a literature survey-based analysis[J].,2010,19(01):017.
 SHI Pei-jun.Theory and practice on disaster system research in a fourth time[J].,2005,14(01):001.
 FEI Xuan,WEN Jiahong,DU Shiqiang,et al.Progress in research on natural disaster resilience[J].,2014,23(01):019.[doi:10.13577/j.jnd.2014.0603]
 ZHOU Lei,WU Xianhua,JI Zhonghui.Research advance in flood damage assessment considering resilience[J].,2017,26(01):011.[doi:10.13577/j.jnd.2017.0202]
 MIAO Huiquan,WANG Naiyu,WANG Yingjun,et al.An urban resilience measurement system based on decomposing post-disaster recovery process[J].,2021,30(01):010.[doi:10.13577/j.jnd.2021.0102]


更新日期/Last Update: 1900-01-01