[1]刘钢,李永贵,肖翅翔,等.风场类型对高层建筑风致响应的影响研究[J].自然灾害学报,2021,30(01):124-131.[doi:10.13577/j.jnd.2021.0113]
 LIU Gang,LI Yonggui,XIAO Chixiang,et al.Effect of geomorphologic terrian categories on wind-induced response of a tall building[J].,2021,30(01):124-131.[doi:10.13577/j.jnd.2021.0113]
点击复制

风场类型对高层建筑风致响应的影响研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年01期
页码:
124-131
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Effect of geomorphologic terrian categories on wind-induced response of a tall building
作者:
刘钢12 李永贵12 肖翅翔12 李毅12
1. 湖南科技大学 结构抗风与振动控制湖南省重点实验室, 湖南 湘潭 411201;
2. 湖南科技大学 土木工程学院, 湖南 湘潭 411201
Author(s):
LIU Gang12 LI Yonggui12 XIAO Chixiang12 LI Yi12
1. Hunan Provincial Key Laboratory of Structures for Wind Resistance and Vibration Control, Hunan University of Science and Technology, Xiangtan 411201, China;
2. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
关键词:
高层建筑多自由度气弹模型风洞试验气动阻尼加速度响应
Keywords:
tall buildingmulti-degree-of freedom aero-elastic modelwind tunnel textsaerodynamic damping ratioacceleration response
分类号:
TU973.2+13;TU317.1;X43;X9
DOI:
10.13577/j.jnd.2021.0113
摘要:
风荷载是影响高层建筑安全性的重要因素之一,而不同的风环境会对高层建筑的风致响应存在不同程度的影响,基于此背景,本文通过高层建筑多自由度气动弹性模型风洞试验,获得了结构原始加速度时程曲线,采用随机减量法对其气动阻尼进行识别,分析了风场类型对高层建筑气动阻尼比和风致加速度响应的影响。结果表明:横风向气动阻尼比随折减风速的变化起伏较大,顺风向气动阻尼比随折减风速的增大而增大;折减风速小于特定值时,地貌类型对气动阻尼影响较小;随着风场类型从A类变化为D类,结构横、顺风向的气动阻尼比的变化趋势趋于平缓,气动阻尼比的正峰值减小,正峰值风速增大。高层建筑横风向的加速度响应大于顺风向;风场类型从A类变化为D类的过程中,横、顺风向的加速度响应均减小。风向角对气动阻尼比和加速度响应均存在较明显的影响。
Abstract:
Wind load is one of the important factors affecting the safety of high-rise buildings, and different wind environments will have varying degrees of impact on the wind-induced response of high-rise buildings. According to this background,the aerodynamic damping ration were identified by random decrement technique based on multi-degree-of-freedom aeroelastic model wind tunnel test,the effect of geomorphologic terrian categories on the aerodynamic damping and wind-induced response of the tall building was investigated. The results show that: Cross-wind aerodynamic damping ration fluctuates greatly with the change of the reduced wind velocity, alone-wind aerodynamic damping ration increases with increasing wind velocity; when the reduced wind velocity was below a certain value, roughness exposure had less influence on the alone-wind aerodynamic damping ration. As terrian categories change from A to D, the trend of aerodynamic damping’s change tend to be steady, the positive peaks of aerodynamic damping ration was reduced, and so does the corresponding reduced wind velocity. The acceleration response of cross-wind is greater than that of the alone-wind. As terrian categories change from A to D, acceleration response of cross-wind and alone-wind was decreased. The wind direction has obvious influence on aerodynamic damping ratio and acceleration response.

参考文献/References:

[1] Kareem A. Dynamic response of high-rise buildings to stochastic wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1-3):1101-1112.
[2] Kanda J, Choi H. Correlating dynamic wind force components on 3-D cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1-3):785-796.
[3] GB50009-2012建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB50009-2012 Load Code for the Design of Building Structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
[4] Marukawa H, Ohkuma T, Momomura Y. Across-wind and torsional acceleration of prismatic high rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1-3):1139-1150.
[5] 全涌, 顾明. 方形断面高层建筑的气动阻尼研究[J]. 工程力学,2004, 21(1):26-30. QUAN Yong, GU Ming. Wind tunnel test study of aerodynamic damping of super high rise buildings[J]. Engineering Mechanics, 2004, 21(1):26-30. (in Chinese)
[6] 曹会兰, 全涌, 顾明. 方形截面超高层建筑的横风向气动阻尼风洞试验研究[J]. 土木工程学报,2013, 46(4):18-25. CAO Huilan, QUAN Yong, GU Ming, et al. Experimental study on across-wind aerodynamic damping of square super-high-rise building[J]. China Civil Engineering Journal, 2013, 46(4):18-25. (in Chinese)
[7] 李寿英, 肖春云, 范永钢, 等. 方形截面超高层建筑全风向气动阻尼的试验研究[J]. 湖南大学学报(自然科学版),2016, 42(7):9-15. LI Shouying, XIAO Chunyun, FAN Yonggang, et al. Experimental investigation of aerodynamic damping on super-high-rise buildings with square cross section under the action of full-direction wind[J]. Journal of Hunan University (Nature Sciences), 2016, 42(7):9-15. (in Chinese)
[8] 张明月, 李永贵, 李毅, 等. 矩形高层建筑风力特性风洞试验研究[J]. 自然灾害学报, 2019, 28(1):123-131. ZHANG Mingyue, LI Yonggui, LI Yi, et al. Experimental study on wind force characteristics of rectangular tall buildings[J]. Journal of Natural Disasters, 2019, 28(1):123-131.(in Chinese)
[9] 全涌. 超高层建筑横风向风荷载及响应研究[D]. 上海:同济大学, 2002. QUAN Yong. Super High-rise Building’s Wind Loads and Response in Across-wind Direction[D]. Shanghai:Tongji University, 2002. (in Chinese)
[10] 周亚萍. 高层建筑风效应风洞实验研究[D]. 长沙:湖南大学,2016. ZHOU Yaping. Study of Wind Effects on Tall Buildings by Wind Tunnel Test[D].Changsha:Hunan University, 2016.(in Chinese)
[11] Tamura Y, Suganuma S Y. Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1996, 59(2-3):115-130.
[12] 徐培福, 肖从真, 李建辉. 高层建筑结构自振周期与结构高度关系及合理范围研究[J]. 土木工程学报,2014, 47(2):1-11. XU Peifu, XIAO Congzhen, LI Jianhui. Study on relationship between natural vibration periods and heights of structures for high-rise buildings and its reference range[J]. China Civil Engineering Journal, 2014, 47(2):1-11. (in Chinese)
[13] 梁枢果, 夏法宝, 邹良浩, 等. 矩形高层建筑横风向风振响应简化计算[J]. 建筑结构学报, 2004(5):49-55. LIANG Shuguo, XIA Fabao, ZOU Lianghao, et al. Simplified evaluation of across-wind dynamic responses of rectangular tall buildings[J].Journal of Bulding Structures, 2004, 25(5):48.(in Chinese)
[14] 全涌, 顾明, 黄鹏.超高层建筑通用气动弹性模型设计[J]. 同济大学学报(自然科学版), 2001, 29(1):122-126. QUAN Yong, GU Ming, HUANG Peng. Design of super high rise buildings’ global aero-elastic model[J]. Journal of Tongji University (Natural Science), 2001, 29(1):122-126. (in Chinese)
[15] 郑朝荣, 史新东, 武岳, 等.千米级摩天大楼气弹模型制作方法与风致响应研究[J]. 建筑结构学报,2016,37(S1):25-32. ZHENG Chaorong, SHI Xindong, WU Yue, et al.Research on fabrication method and wind-induced responses of aero-elastic model for a thousand-meter scale super tall budilding[J]. Journal of Building Structures,2016,37(S1):25-32. (in Chinese)
[16] 曹会兰, 全涌, 顾明, 等. 独立矩形截面超高层建筑的顺风向气动阻尼风洞试验研究[J]. 振动与冲击, 2012, 31(5):122-127. CAO Huilan, QUAN Yong, GU Ming, et al. Along-wind aerodynamic damping of isolated rectangular high-rise buildings[J]. Journal of Vibration and Shock, 2012, 31(5):122-127.

相似文献/References:

[1]胡传平,杨昀.高层建筑火灾情况下利用电梯疏散的案例研究[J].自然灾害学报,2007,16(04):097.
 HU Chuan-ping,YANG Yun.A case study on fire evacuation by elevator in highrise building[J].,2007,16(01):097.
[2]曾桂香,郭呈祥.高层建筑顶部细小突出物的鞭梢效应[J].自然灾害学报,2008,17(04):143.
 ZENG Gui-xiang,GUO Cheng-xiang.Whipping effect of small protrusions at top highrise builading[J].,2008,17(01):143.
[3]张叶,何嘉鹏.高层建筑火灾安全疏散二级灰关联评估[J].自然灾害学报,2009,18(01):024.
 ZHANG Ye,HE Jia-peng.Two-level grey relational evaluation of safe evacuation in highrise building fires[J].,2009,18(01):024.
[4]董军,毛黎明,季克和.复杂环境中玻璃幕墙设计风压风洞试验[J].自然灾害学报,2009,18(06):175.
 DONG Jun,MAO Li-ming,JI Ke-he.Wind tunnel test for design wind pressure of glass curtain wall in complex environment[J].,2009,18(01):175.
[5]李永贵,李秋胜.高层建筑中庭表面风压特性的试验研究[J].自然灾害学报,2014,23(01):047.[doi:10.13577/j.jnd.2014.0107]
 LI Yonggui,LI Qiusheng.Experimental investigation on characteristics of wind pressure on atrium facades of tall building[J].,2014,23(01):047.[doi:10.13577/j.jnd.2014.0107]
[6]林鹏,赵春梅,卢兆明,等.性能化火灾安全评估应用个案研究[J].自然灾害学报,2006,15(01):074.
 LIN Peng,ZHAO Chun-mei,S. M. Lo,et al.Case study on application of performance-based fire safety evaluation[J].,2006,15(01):074.
[7]杨柯,李秋胜,王冰笛.基于实测台风数据的超高层建筑非线性计算[J].自然灾害学报,2006,15(03):101.
 YANG Ke,Q. S. Li,WANG Bing-di.A nonlinear numerical research on super-tall building based on typhoon measurements[J].,2006,15(01):101.
[8]刘仲伟,孙景江,丁宝荣,等.考虑地震动频谱成分的高层结构易损性初步研究[J].自然灾害学报,2014,23(05):045.[doi:10.13577/j.jnd.2014.0506]
 LIU Zhongwei,SUN Jingjiang,DING Baorong,et al.Preliminary study on vulnerability of highrise buildings considering spectrum of ground motion[J].,2014,23(01):045.[doi:10.13577/j.jnd.2014.0506]
[9]李正农,康建彬.风场和周边环境干扰对高层建筑平均风压的影响[J].自然灾害学报,2014,23(05):211.[doi:10.13577/j.jnd.2014.0527]
 LI Zhengnong,KANG Jianbin.Influence of wind fields and surrounding interference on the mean wind pressure of high-rise buildings[J].,2014,23(01):211.[doi:10.13577/j.jnd.2014.0527]
[10]李正农,郭昌根,尚扬,等.基于实测加速度的高层建筑风荷载反演[J].自然灾害学报,2017,26(03):113.[doi:10.13577/j.jnd.2017.0314]
 LI Zhengnong,GUO Changgen,SHANG Yang,et al.Wind load inversion of highrise building based on measured acceleration[J].,2017,26(01):113.[doi:10.13577/j.jnd.2017.0314]

备注/Memo

备注/Memo:
收稿日期:2020-01-05;改回日期:2020-11-09。
基金项目:国家自然科学基金项目(51878271,51708207);湖南省教育厅基金项目(18B206)
作者简介:刘钢(1995-),男,硕士研究生,主要从事结构风工程研究.E-mail:1019923855@qq.com
通讯作者:李永贵(1981-),男,副教授,博士,主要从事结构风工程研究.E-mail:lyg@hunst.edu.cn
更新日期/Last Update: 1900-01-01