[1]王程,汤鹏,庄海洋,等.考虑错缝拼装的过江大直径管廊盾构隧道抗震性能研究[J].自然灾害学报,2021,30(01):116-123.[doi:10.13577/j.jnd.2021.0112]
 WANG Cheng,TANG Peng,ZHUANG Haiyang,et al.Seismic performance of large shield tunnel under the Yangzi River with considering the staggered joints[J].,2021,30(01):116-123.[doi:10.13577/j.jnd.2021.0112]
点击复制

考虑错缝拼装的过江大直径管廊盾构隧道抗震性能研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年01期
页码:
116-123
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Seismic performance of large shield tunnel under the Yangzi River with considering the staggered joints
作者:
王程1 汤鹏2 庄海洋1 杨明2
1. 南京工业大学 岩土工程研究所, 江苏 南京 210009;
2. 中国能源建设集团江苏省电力设计院有限公司, 江苏 南京 211102
Author(s):
WANG Cheng1 TANG Peng2 ZHUANG Haiyang1 YANG Ming2
1. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, China;
2. China Energy Engineering Group Jiangsu Power Design Institute Co., Ltd, Nanjing 211102, China
关键词:
电力管廊盾构隧道抗震性能错缝拼装三维数值模拟
Keywords:
power pipe galleryshield tunnelseismic performancestaggered assemblynumerical simulation
分类号:
TU4;P315.92;X9
DOI:
10.13577/j.jnd.2021.0112
摘要:
为探究GIL综合管廊大直径盾构隧道的抗震性能,考虑盾构管片的横向和纵向错缝拼装,以及盾构隧道与内部混凝土支架结构的动力相互作用,分别建立了土-盾构隧道-内部结构静动力耦合非线性二维和三维有限元模型,分析了盾构隧道的变形特征、管片峰值和残余张开量、内部支架结构变形等地震响应规律。结果表明:随着输入峰值加速度的增大,管廊内部管道支架沿高度向上加速度增长愈发明显。同时,通过二维和三维有限元计算结果的对比分析,发现二维有限元分析得到的管片张开量峰值明显大于三维计算结果,表明盾构隧道的纵向错缝拼装明显提高盾构隧道的抗地震变形能力。因此,建议在进行盾构隧道抗震性能分析时采用盾构管片横向和纵向错缝拼装的三维有限元进行计算。当采用只考虑管片横向错缝拼装的二维模型计算时,应对管片峰值张开量计算结果进行折减,推荐折减系数为0.6。
Abstract:
To explore the seismic performance of a large-diameter shield tunnels with GIL composite pipe gallery,considering the transverse and longitudinal staggered assembly of shield tunnel segments and the dynamic interaction between the shield tunnel and the internal concrete support structure,the two-dimensional and three-dimensional finite element models were established respectively. The deformation characteristics of the shield tunnel, the peak value and residual opening of the segment, and the deformation of the internal support structure were analyzed in this study. The results show that the upward acceleration of the pipeline support in the pipe gallery increases more obviously with the increase of the input peak acceleration. At the same time, comparing the results of the two-dimensional and three-dimensional finite element, it is found that the peak segment openings of the two-dimensional finite element are apparently larger than those by the three-dimensional model. It shows that the longitudinal staggered assembly of shield tunnels significantly improves the seismic deformation resistance of the shield tunnels. Therefore, it is recommended to establish a three-dimensional finite element model with tube pieces transverse and longitudinal staggered when analyzing the seismic performance of shield tunnels. When using a two-dimensional model that only considers the transverse staggered assembly of the segments, the calculation results of the peak segment opening should be reduced, and the recommended reduction factor is 0.6.

参考文献/References:

[1] 晏启祥, 唐茂皓, 何川, 等. 基于薄壁圆柱壳理论的盾构隧道抗震拟静力分析法[J]. 岩土工程学报, 2014, 36(7):1371-1376. YAN Qixiang, TANG Maohao, HE Chuan,et al. Pseudo-static analysis method for shield tunnels based on theory of thin-walled cylindrical shell[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7):1371-1376.
[2] 晏启祥, 张煜, 王春艳, 等. 剪切波作用下盾构隧道地震效应的拟静力分析方法研究[J]. 工程力学, 2015, 32(5):184-191. YAN Qixiang, ZHANG Yu, WANG Chunyan, et al. Quasi-static analysis method for seismic effect of shear waves on shield tunnel[J]. Engineering Mechanics, 2015, 32(5):184-191.(in Chinese)
[3] 裴利华. 反应位移法在地铁隧道抗震分析中的应用[J]. 土木建筑与环境工程, 2016, 38(S1):39-43. PEI Lihua. Application of response displacement method in the seismic analysis of subway tunnel[J].Journal of Civil, Architectural & Environment Engineering, 2016, 38(S1):39-43.(in Chinese)
[4] 刘晶波, 王东洋, 谭辉, 等. 隧道纵向地震反应分析的反应位移法对比[J]. 振动与冲击, 2019, 38(21):104-111,132. LIU Jingbo WANG Dongyang TAN Hui, et al. Response displacement methods for longitudinal seismic response analysis of tunnel structures[J]. Journal of Vibration and Shock, 2019, 38(21):104-111,132.(in Chinese)
[5] 邵润萌, 雷扬. 基于反应位移法的盾构隧道纵向抗震分析[J]. 土木工程学报, 2013, 46(S2):260-265. SHAO Runmeng, LEI Yang. Longitudinal anti-seismic analysis of shield tunnel based on response deformation method[J].China Civil Engineering Jounrnal, 2013, 46(S2):260-265.
[6] 禹海涛, 陈董祎, 姜海西. 考虑变形缝影响的盾构隧道纵向抗震性能分析[J].自然灾害学报, 2018, 27(6):10-18. YU Haitao, CHEN Dongyi, JIANG Haixi. Longitudinal seismic performance analysis of shield tunnels considering the effect of deformation joints[J]. Journal of Natural Disasters, 2018, 27(6):10-18. (in Chinese)
[7] 龚国栋, 梁建文, 巴振宁, 等. 复杂软土盾构隧道横断面抗震时程分析[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(S1):106-112. GONG Guodong, LIANG Jianwen, BA Zhenning, et al. Seismic transverse time-history analysis of shield tunnel in complex soft soil[J]. Journal of Tianjin University(Science and Technology), 2019, 52(S1):106-112.(in Chinese)
[8] B.Mohammadi-Hajia, A. Ardakanib. Performance-based analysis of tunnels under seismic events with nonlinear features of soil mass and lining[J]. Soil Dynamic Earthquake Engineering, 2020, (134):106158.
[9] 蔡海兵, 彭立敏, 李兴龙. 工作竖井与隧道连接处支护结构横向地震响应[J]. 自然灾害学报, 2011, 20(2):188-195. CAI Haibin, PENG Limin, LI Xinglong. Transverse seismic response of supporting structure of joint between working shaft and tunnel[J]. Journal of Natural Disasters, 2011, 20(2):188-195.(in Chinese)
[10] 关振长, 徐遒, 邓涛. 浅埋偏压条件下特大断面隧道地震动态响应的试验研究[J]. 自然灾害学报, 2018, 27(3):68-76. GUAN Zhenchang, XU Qiu, DENG Tao. Seismic responses of large section tunnelwith shallow cover and unsymmetrical loading[J].Journal of Natural Disasters, 2018, 27(3):68-76.(in Chinese)
[11] 袁勇, 包蓁, 禹海涛, 等. 考虑行波效应的盾构隧道多点振动台试验[J]. 中国公路学报, 2017, 30(8):174-182. YUAN Yong, BAO Zhen, YU Haitao, et al. Multi-point shaking table test on shield tunnels in consideration of wave-passage effect[J]. China Journal of Highway and Transport, 2017, 30(8):174-182.(in Chinese)
[12] 耿萍, 何川, 晏启祥. 隧道结构抗震分析方法现状与进展[J]. 土木工程学报, 2013, 46(S1):262-268. GENG Ping, HE Chuan, YAN Qixiang. The current situation and prospect of seismic analysis methods for tunnel structure[J]. China Civil Engineering Jounrnal, 2013, 46(S1):262-268.
[13] 陈国兴, 陈苏, 杜修力, 等.城市地下结构抗震研究进展[J].防灾减灾工程学报, 2016, 36(1):1-23. CHEN Guoxing, CHEN Su, DU Xiuli, et al. Review of seismic damage, model test, available design and analysis methods of urban underground structures:retrospect and prospect[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1):1-23.(in Chinese)
[14] 庄海洋, 陈国兴, 朱定华. 土体动力黏塑性记忆型嵌套面本构模型及其验证[J]. 岩土工程学报, 2006, 28(10):1267-1272. ZHUANG Haiyang, CHEN Guoxing, ZHU Dinghua. The dynamic visco-plastic memorial nested yield surface model of soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10):1267-1272. (in Chinese)
[15] Jeeho L, Gregory Fenves L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998(4):892-900.
[16] ZHUANG Haiyang, HU Zhonghua, WANG Xuejian, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12):3645-3668.
[17] 刘学增, 赖浩然, 桑运龙, 等. 双侧卸载工况下盾构隧道错缝拼装结构变形特征[J]. 同济大学学报(自然科学版), 2019, 47(10):1398-1405. LIU Xuezeng, LAI Haoran, SANG Yunlong, et al. Deformation characteristics of shield tunnel with staggered joints under bilateral unloading condition[J]. Journal of Tongji University(Natural Science), 2019, 47(10):1398-1405.(in Chinese)
[18] 付继赛, 庄海洋, 王旭, 等. 地下连续墙连接方式对地铁车站结构地震反应的影响研究[J].自然灾害学报, 2018, 27(6):42-50. FU Jisai, ZHUANG Haiyang, WANG Xu, et al. Influence of diaphragm wall connection mode on earthquake response of subway station structure[J]. Journal of Natural Disasters, 2018, 27(6):42-50.(in Chinese)
[19] 庄海洋, 任佳伟, 王瑞, 等.两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J].岩土工程学报, 2019, 41(1):131-138. ZHUANG Haiyang, REN Jiawei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1):131-138.(in Chinese)
[20] BS 5975-2008. Code of practice for temporary works procedures and the permissible stress design of false work[S]. British Standards Institution, 2008.

相似文献/References:

[1]蔡海兵,彭立敏,李兴龙.工作竖井与隧道连接处支护结构横向地震响应[J].自然灾害学报,2011,20(02):188.
 CAI Hai-bing,PENG Li-min,LI Xin-long.Transverse seismic response of supporting structure of joint between working shaft and tunnel[J].,2011,20(01):188.
[2]袁勇,王胜辉,彭定超.盾构隧道全寿命防水风险模糊评价[J].自然灾害学报,2005,14(02):081.
 YUAN Yong,WANG Sheng-hui,PENG Ding-chao.Fuzzy assessment of lifetime risk in water-proof of shield tunnel[J].,2005,14(01):081.
[3]黄忠凯,张冬梅.软土地区地表结构对盾构隧道地震响应影响的风险分析[J].自然灾害学报,2018,27(04):067.[doi:10.13577/j.jnd.2018.0409]
 HUANG Zhongkai,ZHANG Dongmei.Risk analysis of the seismic resposnse of shield tunnel considering the above ground structutre in soft deposits[J].,2018,27(01):067.[doi:10.13577/j.jnd.2018.0409]
[4]禹海涛,陈董祎,姜海西.考虑变形缝影响的盾构隧道纵向抗震性能分析[J].自然灾害学报,2018,27(06):010.[doi:10.13577/j.jnd.2018.0602]
 YU Haitao,CHEN Dongyi,JIANG Haixi.Longitudinal seismic performance analysis of shield tunnels considering the effect of deformation joints[J].,2018,27(01):010.[doi:10.13577/j.jnd.2018.0602]
[5]魏纲,刘亚宇,张苑竹.基坑围护结构变形诱发邻近盾构隧道变形计算方法[J].自然灾害学报,2020,29(05):161.[doi:10.13577/j.jnd.2020.0518]
 WEI Gang,LIU Yayu,ZHANG Yuanzhu.Calculation method of adjacent shield tunnel deformation caused by deformation of foundation pit envelope[J].,2020,29(01):161.[doi:10.13577/j.jnd.2020.0518]
[6]蔡鑫,梁建文,徐安全,等.妈湾跨海大直径盾构隧道纵向抗震分析[J].自然灾害学报,2020,29(06):013.[doi:10.13577/j.jnd.2020.0602]
 CAI Xin,LIANG Jianwen,XU Anquan,et al.Longitudinal seismic analysis of Mawan sea-crossing large diameter shield tunnels[J].,2020,29(01):013.[doi:10.13577/j.jnd.2020.0602]

备注/Memo

备注/Memo:
收稿日期:2020-08-06;改回日期:2020-09-09。
基金项目:中国能源建设股份有限公司科学技术项目(CEEC2016-KJ11);国家自然科学基金面上项目(51778290)
作者简介:王程(1994-),男,硕士研究生,主要从事地下结构抗震性能研究.E-mail:wangcheng0630@126.com
通讯作者:庄海洋(1978-),男,教授,博导,主要从事土-结构动力相互作用等方面的研究.E-mail:zhuang7802@163.com
更新日期/Last Update: 1900-01-01