[1]黄佳梅,易伟建.近场脉冲地震下考虑模型不确定性的桥梁时变抗震分析[J].自然灾害学报,2021,30(01):099-108.[doi:10.13577/j.jnd.2021.0110]
 HUANG Jiamei,YI Weijian.Time-dependent seismic performance of bridges considering modeling uncertainties under near-field pulse-like ground motions[J].,2021,30(01):099-108.[doi:10.13577/j.jnd.2021.0110]
点击复制

近场脉冲地震下考虑模型不确定性的桥梁时变抗震分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年01期
页码:
099-108
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Time-dependent seismic performance of bridges considering modeling uncertainties under near-field pulse-like ground motions
作者:
黄佳梅12 易伟建1
1. 湖南大学 土木工程学院, 湖南 长沙 410082;
2. 湖南工程学院 建筑工程学院, 湖南 湘潭 411104
Author(s):
HUANG Jiamei12 YI Weijian1
1. College of Civil Engineering, Hunan University, Changsha 410082, China;
2. Department of Building Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
关键词:
桥梁工程近场脉冲地震锈蚀时变性能评估
Keywords:
bridge engineeringnear-field pulse-like ground motionscorrosiontime-dependentperformance assessment
分类号:
U448.14;X9
DOI:
10.13577/j.jnd.2021.0110
摘要:
为了研究近场脉冲地震下桥梁结构的时变抗震性能,以一座常规连续梁桥为研究对象,引入氯离子侵蚀模型,在考虑多种不确定性因素基础上,采用拉丁超立方抽样建立不同服役时期的时变模型样本,运用增量动力分析方法,从能力、需求以及倒塌等方面对算例桥梁的时变抗震性能进行了研究和评价。结果表明:近场脉冲型地震下结构的抗震需求明显大于远场地震;氯离子侵蚀导致钢筋锈蚀后力学性能发生改变,箍筋对核心混凝土约束能力减弱,锈蚀纵筋屈服强度及极限拉应变都降低,导致桥墩的变形能力下降;与地面运动的不确定性相比,模型参数的不确定性对结构的抗震需求均值及离散性影响均不大;随着服役时间延长,钢筋锈蚀加剧,桥墩出现倒塌破坏的概率加大。
Abstract:
In order to study the time-dependent seismic performance of bridge under near-field pulse-like ground motions, a conventional continuous bridge considering chloride attack was taken as an example. In order to consider the vary uncertainty factors in the model, Latin hypercube sampling method was adopted to establish time-dependent model samples at different times. Then the time-dependent seismic performance of the bridge from the aspects such as capacity, demand and collapsed in the earthquake were studied and evaluated with incremental dynamic analysis. The results show that the seismic demand of structure in near-field pulse-like pulse earthquake is obviously greater than that in far field earthquake. As the mechanical properties of reinforcement changed after corrosion due to chloride attack, the constraint ability of stirrup to core concrete is weakened and yield strength and ultimate tensile strain of longitudinal reinforcement are reduced, which led to decline of the deformation ability of pier. Compared with the uncertainty of ground motion, the uncertainty of model parameters has little influence on the mean value and discreteness of seismic demand. With the extension of service time and the increment of corrosion of the steel, the probability of collapse of bridge pier increases.

参考文献/References:

[1] 李宏男, 李超. 基于全寿命周期的桥梁结构抗震性能评价与设计方法研究进展[J]. 中国公路学报, 2014, 27(10):32-45. LI Hongnan, LI Chao. Research progress on life-cycle based bridge structural seismic performance evaluation and design method[J]. China Journal of Highway and Transport, 2014, 27(10):32-45.(in Chinese)
[2] B. Sharanbaswa Vishwanath, Swagata Banerjee. Life-cycle resilience of aging bridges under earthquakes[J]. Journal of Bridge Engineering, 2019, 24(11):04019106.
[3] Peng Deng, Chao Zhang, Shiling Pei,et al. Modeling the impact of corrosion on seismic performance of multi-span simply-supported bridges[J]. Construction and Building Materials, 2018, 185(10):193-205.
[4] Fengkun Cui, Haonan Zhang, Michel Ghosn,et al. Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion[J]. Engineering Structures, 2018, 155(1):61-72.
[5] 李立峰, 吴文朋, 胡思聪, 等. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1):163-170. LI Lifeng, WU Wenpeng, HU Sicong, et al. Time-dependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion[J]. Engineering Mechanics, 2016, 33(1):163-170. (in Chinese)
[6] 胡思聪, 王连华, 李立峰, 等. 非一致氯离子侵蚀下近海桥梁时变地震易损性研究[J]. 土木工程学报, 2019, 52(4):62-71,97. HU Sicong, WAGN Lianhua, LI Lifeng, et al. Time-dependent seismic fragility assessment of offshore bridges subject to non-uniform chloride-induced corrosion[J]. Journal of Civil Engineering, 2019, 52(4):62-71,97.(in Chinese)
[7] 李辉辉, 李立峰. 考虑变量相关性的桥梁时变地震易损性研究[J]. 振动与冲击, 2019, 38(9):173-183. LI Huihui, LI Lifeng.Bridge time-varying seismic fragility considering variables’ correlation[J]. Journal of Vibration and Shock, 2019, 38(9):173-183.(in Chinese)
[8] 柳春光, 任文静, 夏春旭. 考虑钢筋腐蚀的近海隔震桥梁地震易损性分析[J]. 自然灾害学报, 2012, 25(6):120-129. LIU Chunguang, REN Wenjing, XIA Chunxu.Vulnerability analysis of offshore isolation bridges considering reinforcement corrosion[J]. Journal of Natural Disasters, 2012, 25(6):120-129.(in Chinese)
[9] 易伟建, 马会杰. 近场地震下已建钢筋混凝土框架结构抗震性能分析[J]. 自然灾害学报, 2010, 19(6):112-118. YI Weijian, MA Huijie. Seismic analysis of existing RC frame structures under near-field ground motions[J]. Journal of Natural Disasters, 2010, 19(6):112-118.(in Chinese)
[10] 陈昉健, 易伟建. 近场地震作用下锈蚀钢筋混凝土桥墩的IDA分析[J]. 湖南大学学报(自然科学版), 2015, 42(3):1-8. CHEN Fangjian, YI Weijian.Incremental dynamic analysis of corroded reinforced concrete bridge columns subjected to near-field earthquake[J]. Journal of Hunan University(Natural Sciences), 2015, 42(3):1-8.(in Chinese)
[11] Misra S Uomoto T. Behaviour of concrete beams and columns in marine environment when corrosion of reinforcing bars takes place[C]. ACI Special Publication SP-109. Proceedings of 2nd International Conference on Concrete in Marine Environment. Canada, 1988:127-145.
[12] Tsoji K Uomoto T, Kakizawa T. Deterioration mechanism of concrete structures caused by corrosion of reinforcing bars[J]. Trans Jpn Concr Inst, 1984,6:163-170.
[13] Abdullah A. Almusallam. Effect of degree of corrosion on the properties of reinforcing steel bars[J]. Construction and Building Materials, 2001, 15(8):361-368.
[14] 李士彬, 张鑫, 贾留东, 等. 箍筋锈蚀钢筋混凝土梁的抗剪承载力分析[J]. 工程力学, 2011, 28(S1):60-79. LI Shibin, ZHANG Xin, JIA Liudong,et al. analysis for shear capacity of reinforced concrete beams with corrosion stirrups[J]. Engineering Mechanics, 2011, 28(S1):60-79.(in Chinese)
[15] Y. G. Du, L. A. Clark, A. H. C. Chan. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3):135-147.
[16] Kim Anh T. Vu, Mark G. Stewart. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4):313-333.
[17] HanSeung Lee, YoungSang Cho. Evaluation of the mechanical properties of steel reinforcement embedded in concrete specimen as a function of the degree of reinforcement corrosion[J]. International Journal of Fracture, 2009, 157(1-2):81-88.
[18] B D Scott, R Park, M J N Priestley. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. Journal of the American Concrete Insititute, 1982, 79(1):13-27.
[19] JTG/TB02-01公路桥梁抗震设计细则[S].北京:人民交通出版社, 2008. JTG/TB02-01 Guidelines for Seismic Design of Highway Bridges[S]. Beijing:China Communication Press, 2008. (in Chinese)
[20] Y. Pan, A.K. Agrawal, M. Ghosn. Seismic fragility of continuous steel highway bridges in New York state[J]. Journal of Bridge Engineering, 2007, 12(6):689-699.
[21] Oh-Sung Kwon, Amr Elnashai. The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure[J]. Engineering Structures, 2006, 28(2):289-303.
[22] 许晨, 王传坤, 金伟良. 混凝土中氯离子侵蚀与碳化的相互影响[J]. 建筑材料学报, 2011, 14(3):376-380. XU Chen, WAGN Chuankun, JIN Weiliang.Interaction effect of chloride attack and carbonization in concrete[J]. Journal of Building Materials, 2011, 14(3):376-380.(in Chinese)
[23] 谷音, 郑文婷, 卓卫东. 基于LHS_MC方法的矮塔斜拉桥地震风险概率分析[J]. 工程力学, 2013, 30(8):96-102. GU Yin, ZHENG Wenting, ZHUO Weidong.Aanlysis of seismic pisk probability assessment of lower-tower cable-stayed bridge based on LHS-MC method[J]. Engineering Mechanics, 2013, 30(8):96-102.(in Chinese)

相似文献/References:

[1]马亚飞,王磊,张建仁.氯盐环境下钢筋混凝土构件锈胀开裂风险概率分析[J].自然灾害学报,2012,21(04):207.
 MA Yafei,WANG Lei,ZHANG Jianren.Risk probability analysis of chloride-induced corrosion cracking of reinforced concrete member[J].,2012,21(01):207.
[2]王宏伟,余建星,谢忠伟.基于模糊随机理论的桥梁防洪风险概率分析[J].自然灾害学报,2009,18(03):060.
 WANG Hong-wei,YU Jian-xing,XIE Zhong-wei.Flood-control risk probability analysis of bridge constructions based on fuzzy random theory[J].,2009,18(01):060.
[3]邹勤,马玉宏,崔杰.近海隔震桥梁基于性态的抗震设防标准[J].自然灾害学报,2014,23(01):057.[doi:10.13577/j.jnd.2014.0108]
 ZOU Qin,MA Yuhong,CUI Jie.Performance-based seismic fortification criteria for offshore isolated bridge[J].,2014,23(01):057.[doi:10.13577/j.jnd.2014.0108]
[4]陈彦江,郝朝伟,李勇.系梁设置对双肢薄壁刚构桥地震响应影响分析[J].自然灾害学报,2015,24(04):063.[doi:10.13577/j.jnd.2015.0408]
 CHEN Yanjiang,HAO Chaowei,LI Yong.Effect of tie beam on seismic response of rigid frame bridge with double-leg thin-walled piers[J].,2015,24(01):063.[doi:10.13577/j.jnd.2015.0408]
[5]陈林,彭婷,刘涛,等.低等级混凝土护栏对厢式卡车撞击桥墩作用的影响规律[J].自然灾害学报,2020,29(05):131.[doi:10.13577/j.jnd.2020.0515]
 CHEN Lin,PENG Ting,LIU Tao,et al.Influences of low-grade concrete barrier on van-type truck collision with bridge piers[J].,2020,29(01):131.[doi:10.13577/j.jnd.2020.0515]

备注/Memo

备注/Memo:
收稿日期:2020-06-03;改回日期:2020-08-22。
基金项目:国家自然科学基金项目(51878260)
作者简介:黄佳梅(1986-),女,讲师,博士研究生,主要从事桥梁结构抗震性能研究.E-mail:huangjiamei@hnu.edu.cn
通讯作者:易伟建(1953-),男,教授,博士生导师,博士,主要从事混凝土结构理论研究.E-mail:wjyi@hnu.edu.cn
更新日期/Last Update: 1900-01-01