[1]秦志光,袁晓铭,曹振中,等.吹填珊瑚礁砂地基处理方法适用性与加固效果应用研究[J].自然灾害学报,2021,30(01):078-88.[doi:10.13577/j.jnd.2021.0108]
 QIN Zhiguang,YUAN Xiaoming,CAO Zhenzhong,et al.Applicability and quality evaluation of foundation treatment method for backfilled coral sand site[J].,2021,30(01):078-88.[doi:10.13577/j.jnd.2021.0108]
点击复制

吹填珊瑚礁砂地基处理方法适用性与加固效果应用研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年01期
页码:
078-88
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Applicability and quality evaluation of foundation treatment method for backfilled coral sand site
作者:
秦志光12 袁晓铭1 曹振中3 莫红艳3
1. 中国地震局工程力学研究所 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080;
2. 中交四航工程研究院有限公司 中交交通基础工程环保与安全重点实验室, 广东 广州 510230;
3. 桂林理工大学 广西岩土力学与工程重点实验室, 广西 桂林 541004
Author(s):
QIN Zhiguang12 YUAN Xiaoming1 CAO Zhenzhong3 MO Hongyan3
1. Institution of Engineering Mechanics, China Earthquake Administration, Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration, Harbin 150080, China;
2. CCCC Key Laboratory of Environment Protection & Safety in Foundation Engineering of Transportation, Guangzhou 510230, China;
3. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin University of Technology, Guilin 541004, China
关键词:
珊瑚礁砂吹填地基地基处理承载力加固效果
Keywords:
coral sandreclaimed soil groundground treatmentbearing capacityreinforcement effect
分类号:
TU4;X9
DOI:
10.13577/j.jnd.2021.0108
摘要:
珊瑚礁砂是珊瑚礁、贝壳等经侵蚀、破碎后沉积在近岸环境中的一种生物碎屑,吹填珊瑚礁砂作为地基土可就地取材、大幅降低工程造价、缩短施工时间。然而,吹填珊瑚礁砂地基处理工程实践中一般采用基于陆源砂的地基处理与加固效果评价方法,具有很大的不确定性。本文在苏丹、沙特、南海某试验区分别采用振动碾压、强夯、振冲法对吹填珊瑚礁砂场地进行地基加固处理,依据载荷试验、标准贯入、动力触探、静力触探等原位测试对珊瑚礁砂场地进行加固效果与有效深度评价,采用平板载荷试验获取珊瑚礁砂场地处理后的地基承载力,结果表明:(1)珊瑚礁砂场地振动碾压法的有效加固深度约1.0 m,加固深度十分有限;(2)500~3 000 kN·m夯击能下强夯法的有效加固深度2.0~4.0 m,明显低于相同条件下陆源砂的有效加固深度;(3)珊瑚礁砂场地振冲后可达到中密、密实状态,132 kW振冲的最大有效加固深度为8.0~10.0 m;(4)平板载荷试验获取的珊瑚礁砂承载力特征值与动力触探击数存在良好的经验关系,地基承载力特征值多数超过500 kPa,最高可达2 000 kPa,与陆源砂的承载力特性存在显著差别,珊瑚礁砂具有"珊瑚礁砂变形大、高压缩性"的特点易出现于高应力情况下,加固后的珊瑚礁砂地基在常压应力下,往往具备较高的强度与承载能力。
Abstract:
Coral reef sand is a kind of biological debris deposited in the coastal environment after erosion and fragmentation of coral reef and shell. The hydraulic filling coral reef sand can be used as the foundation soil, which can greatly reduce the project cost and shorten the construction time. Nevertheless, it is uncertain that the method of foundation treatment and its quality evaluation, derived from quartz sand engineering practice, is applied to coral sand. In this paper, vibration compaction, dynamic compaction and vibro-flotation were used to reinforce the foundation of backfilled coral sand in Sudan, Saudi Arabia and South China Sea. The quality and reinforcement depth of the backfilled coral sand site are evaluated according to the in-situ tests such as load plate test, standard penetration test, dynamic penetration test and cone penetration test, and the foundation bearing capacity of the treated coral sand site was obtained by plate load test. Results indicate that: (1) the effective reinforcement depth of vibration compaction method for coral sand site is about 1.0m, which is very shallow. (2) the effective reinforcement depth of dynamic compaction under 500 kN·m~3 000 kN·m energy is 2.0 m~4.0 m, which is obviously lower than that of quartz sand under the same energy compaction. (3) the coral sand site can reach the state of medium density after vibro-flotation, and the maximum reinforcement depth using 132kW vibrator is 8.0 m~10.0 m. (4) There is a good empirical relationship between the bearing capacity of coral sand obtained by plate load test and the blow count of dynamic penetration test. The allowable bearing capacity of coral sand site after treatment mostly exceeds 500kPa and can reaches the maximum of 2000kPa, which is significantly different from that of quartz sand. Coral reef sand is characterized by "large deformation and high pressure shrinkage", which is easy to occur under high stress. While the reinforced coral reef sand foundation often has higher strength and bearing capacity under normal stress.

参考文献/References:

[1] 周扬, 李宁, 吴吉东. 中国自然灾害减灾救灾标准的演变特点[J].自然灾害学报, 2013, 22(1):1-9. ZHOU Yang, LI Ning, WU Jidong. Evolution characteristics of standards of natural disaster mitigation and relief in China[J]. Journal of Natural Disasters, 2013, 22(1):1-9.(in Chinese)
[2] 王颖.海岸带资源开发研究[C]//中国科学院地球可持续部论文集, 北京:科学出版社,1988:219-222. WANG Ying. Study on the development of coastal zone resources[C]//Collection papers of the Department of Earth Sustainability, Chinese Academy of Sciences, Beijing:Science press, 1988:219-222. (in Chinese)
[3] 沈焕庭,朱建荣.论我国海岸带陆海相互作用研究[J].海洋通报, 1999,18(6):11-17. SHEN Huanting, ZHU Jianrong. The land and ocean interactions in the coastal zone of China[J]. Marine Science Bullletin, 1999,18(6):11-17.(in Chinese)
[4] 毛星竹, 刘建红, 李同昇, 等."一带一路"沿线国家自然灾害时空分布特征分析[J]. 自然灾害学报, 2018,27(1):1-8. MAO Xingzhu, LIU Jianhong, LI Tongsheng, et al. Spatio-temporal patterns of natural disasters in countries along the Belt and Road[J]. Journal of Natural Disaster, 2018,27(1):1-8. (in Chinese)
[5] 谢礼立, 曲哲. 论土木工程灾害及其防御[J].自然灾害学报, 2016, 25(1):1-10. XIE Lili, QU Zhe. On the civil engineering disaster and its mitigation[J]. Journal of Natural Disasters, 2016, 25(1):1-10. (in Chinese)
[6] 赵焕庭.中国现代珊瑚礁研究[J].世界科技研究与发展, 1998, (4):98-105. ZHAO Huanting. Researches of coral reef in modern China[J]. World SCI-Tech R&D, 1998, (4):98-105. (in Chinese)
[7] Mejia L.,Yeung R. Liquefaction of coralline soils during the 1993 Guam earthquake[C]//Session on Seismically-Induced Movements of Foundations and Abutments, at the 1995 ASCE National Convention, 1995, San Diego, CA, 33-48.
[8] 崔永圣. 珊瑚礁砂岩土力学特性分析[J]. 岩土工程技术, 2014, 28(5):232-236. CUI Yongsheng. Analysis of characteristics of geotechnical engineering of coral reef[J]. Geotechnical Engineering Technique, 2014, 28(5):232-236. (in Chinese)
[9] 刘崇权, 杨志强, 汪稔.钙质土力学性质研究现状与进展[J]. 岩土力学, 1995, 16(1):74-84. LIU Chongquan, YANG Zhiqiang, WANG Ren. The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 1995, 16(1):74-84. (in Chinese)
[10] 虞海珍,汪稔.钙质砂动强度试验研究[J].岩土力学, 1999, (4):6-11. YU Haizhen, WANG Ren. The cyclic strength test research on calcareous sand[J]. Rock and Soil Mechanics, 1999, (4):6-11. (in Chinese)
[11] Shahnazari H., Jafarian Y., Tutunchian M., et al. Probabilistic assessment of liquefaction occurrence in calcareous fill materials of Kawaihae Harbor, Hawaii[J]. International Journal of Geomechanics, 2016, 16(6):1532-3641.
[12] Sadegh Nadimi, Joana Fonseca. Image based simulation of one-dimensional compression tests on carbonate sand[C]//Micro to MACRO Mathematical Modelling in Soil Mechanics. Calabria, 2018.
[13] 朱长歧,周斌,刘海峰. 胶结钙质土的室内试验研究进展[J]. 岩土力学,2015,36(2):311-319. ZHU Changqi, ZHOU Bin, LIU Haifeng. State-of-the-art review of developments of laboratory tests on cemented calcareous soils[J]. Rock and Soil Mechanics, 2015,36(2):311-319. (in Chinese)
[14] 王以贵.珊瑚混凝土在港工中应用的可行性[J]. 水运工程, 1988, (9):46-48. WANG Yigui. The application feasibility of coral concrete in port engineering[J]. Port & Waterway Engineering, 1988, (9):46-48. (in Chinese)
[15] 刘崇权,汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998,19(1):32-37. LIU Chongquan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998,19(1):32-37. (in Chinese)
[16] 王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5):802-810. WANG Gang, YE Qinguo, ZHA Jingjing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5):802-810. (in Chinese)
[17] 沈扬, 沈雪, 俞演名, 等. 粒组含量对钙质砂压缩变形特性影响的宏细观研究[J]. 岩土力学, 2019,40(10):3733-3740. SHEN Yang, SHEN Xue, YU Yanming, et al. Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents[J]. Rock and Soil Mechanics, 2019,40(10):3733-3740. (in Chinese)
[18] Shahnazari, Habib, Rezvani, Reza. Effective arameters for the particle breakage of calcareous sands:An experimental study[J]. Engineering Geology, 2013, 159(1):98-105.
[19] 工程地质手册编委会. 工程地质手册(第五版)[M]. 北京:中国建筑工业出版社, 2018. Editorial Committee of Handbook of Engineering Geology. Handbook of Engineering Geology (Fifth Edition)[M]. Beijing:China Architecture & Building Press, 2018. (in Chinese)
[20] 王德咏,梁小丛,牛犇.振冲密实法处理吹填地基的两个关键技术问题[J].水运工程, 2019, 557(6):163-166. WANG Deyong, LIANG Xiaocong, NIU Ben. Two key technical issues of vibroflotation compaction for hydraulic-filled foundation treatment[J]. Port & Waterway Engineering, 2019, 557(6):163-166. (in Chinese)
[21] 强夯地基处理技术规程[S]. 北京:中国计划出版社, 2010, CECS 279. Technical Code for Dynamic Compaction Foundation Treatment[S]. China Planning Press, 2010, CECS 279. (in Chinese)
[22] JGJ79-2012建筑地基处理技术规范[S].中华人民共和国住房和城乡建设部, 2012. JGJ79-2012 Technical Code for Building Foundation Treatment[S]. Ministry of Housing and Urban-Rural Development, People’s Republic of China, 2012. (in Chinese)
[23] 张平仓, 汪稔. 强夯法施工实践中加固深度问题浅析[J]. 岩土力学, 2000, 21(1):76-80. ZHANG Pingcang, WANG Ren. A study of dynamic consolidation depth in engineering practice[J]. Rock and Soil Mechanics, 2000, 21(1):76-80. (in Chinese)
[24] 王新志,王星,刘海峰,等.珊瑚礁地基工程特性现场试验研究[J].岩土力学, 2017,38(7):2065-2070,2079. WANG Xinzhi, WANG Xing, LIU Haifeng, et al. Field test study of engineering behaviors of coral reef foundation[J]. Rock and Soil Mechanics, 2017,38(7):2065-2070,2079. (in Chinese)
[25] Karl Terzaghi. Theoretical Soil Mechanics[M]. John Wiley and Sons, Inc., London, 2001.
[26] TB10018-2018铁路工程地质原位测试规程[S]. 北京:中国铁道出版社, 2018. TB10018-2018 Specification for In-situ Testing of Railway Engineering Geology[S]. Beijing:China Railway Press, 2018. (in Chinese)
[27] 吴京平, 褚瑶, 楼志刚. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报,1997, 19(5):49-55. WU Jingping, CHU Yao, LOU Zhigang. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5):49-55. (in Chinese)
[28] 马启锋,刘汉龙,肖杨,等.高应力作用下钙质砂压缩及颗粒破碎特性试验研究[J].防灾减灾工程学报,2018,38(6):1020-1025. MA Qifeng, LIU Hanlong, XIAO Yang, et al. Compression and particle breakage features of calcareous sand under high stress[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018,38(6):1020-1025. (in Chinese)
[29] 张丙树,顾凯,李金文,等. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 2020, 28(4):725-733. ZHANG Bingshu, GU Kai, LI Jinwen, et al. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 2020, 28(4):725-733. (in Chinese)
[30] Mcclelland, B. Calcareous sediments:an Engineering enigma[C]//Proc. Int. Conf:Calcareous Sediments, Perth, Australia, 1988:77-784.
[31] King R, Lodge M. North-west shelf development-the foundation engineering challenge[C]//Proc. Int. Conf:Calcareous Sediments, Perth, Australia, 1988:333-342.
[32] Fahey M, Jewell R J. Model pile tests in calcarenite[C]//Proc. Int. Conf:Calcareous Sediments, Perth, Australia, 1988:555-564.

备注/Memo

备注/Memo:
收稿日期:2020-09-23;改回日期:2020-11-10。
基金项目:国家自然科学基金项目(51968015)
作者简介:秦志光(1979-),男,高级工程师,主要从事工程地质与地基处理等方面的研究.E-mail:qzhiguang@cccc4.com
通讯作者:曹振中(1982-),男,教授,博士,主要从事岩土地震工程研究.E-mail:iemczz@163.com
更新日期/Last Update: 1900-01-01