[1]杨剑,陈煜,徐枫,等.考虑地形和土地覆盖影响的参数化台风风场模拟[J].自然灾害学报,2021,30(01):047-59.[doi:10.13577/j.jnd.2021.0105]
 YANG Jian,CHEN Yu,XU Feng,et al.Parametric typhoon wind field simulations by considering the effects of terrain and land cover[J].,2021,30(01):047-59.[doi:10.13577/j.jnd.2021.0105]
点击复制

考虑地形和土地覆盖影响的参数化台风风场模拟
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
30
期数:
2021年01期
页码:
047-59
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Parametric typhoon wind field simulations by considering the effects of terrain and land cover
作者:
杨剑 陈煜 徐枫 段忠东
哈尔滨工业大学(深圳), 土木与环境工程学院, 广东 深圳 518000
Author(s):
YANG Jian CHEN Yu XU Feng DUAN Zhongdong
School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518000, China
关键词:
地形土地覆盖地表粗糙长度参数化台风风场风速
Keywords:
terrainland coversurface roughness lengthparametric typhoon wind fieldwind speed
分类号:
TU14;X43;X9
DOI:
10.13577/j.jnd.2021.0105
摘要:
现有参数化台风风场模型通常采用单一地表粗糙度假设,忽略地形和土地覆盖的影响,使得参数化台风风场模型不能真实反映台风风场。本文基于GTOPO30(Global Topographic Data of 30 arc seconds)全球数字高程数据和USGS (U.S.Geological Survey)全球土地覆盖数据,将地形地貌效应等效为地表粗糙长度,建立了受西北太平洋台风影响的东亚地区的地表粗糙长度空间分布;并对比验证了3个典型地貌的地表粗糙长度。然后,对参数化台风风场模型进行了适当修正,使其能耦合地形起伏对风场产生的抬升和沉降作用。以WRF (Weather Research and Forecasting)模式的模拟结果为基准,采用3个历史台风案例,考察了地形地貌对参数化台风风场模拟的影响。对比结果表明,考虑地形地貌效应可以显著提升参数化台风风场模型对台风空间结构的模拟能力。考虑地形地貌影响的参数化台风风场模型的模拟结果与实测结果吻合较好。
Abstract:
Instead of considering the effects of terrain and land cover, the existing parametric typhoon wind field models adopt the assumption of uniform surface roughness, which cannot predict typhoon wind fields correctly. Based on the datasets of global digital elevation (GTOPO30, Global Topographical Data of 30 arc seconds) and global land cover (USGS, U.S. Geological Survey), the effects of terrain and land cover are equivalent to the surface roughness length. The spatial distribution of surface roughness length of East Asia, which suffered by typhoons generated over the Northwest Pacific Ocean, is established. Then the surface roughness lengths of three land cover types are verified. The parametric typhoon wind field model is modified to couple the uplift and subsidence effects of wind field caused by terrain. Based on the simulation results of WRF (Weather Research and Forecasting), three historical typhoons are compared to investigate the influences of terrain and land cover on parametric typhoon wind field model. Comparison results show that considering the effects of terrain and land cover can significantly improve the simulation ability of parametric typhoon wind field model to predict the spatial structure of typhoons. In addition, the simulation results of this model with terrain and land cover are also in good agreement with observations.

参考文献/References:

[1] 段忠东, 肖玉凤, 肖仪清, 等. 基于数值模拟的台风危险性分析综述(Ⅱ)——随机抽样模拟与极值风速预测[J]. 自然灾害学报, 2012, 21(2):1-8. DUAN Zhongdong, XIAO Yufeng, XIAO Yiqing, et al. Review of numerical simulation based typhoon hazard analysis:random sampling simulaiton and extreme wind speed prediction[J]. Journal of Natural Disasters, 2012, 21(2):1-8. (in Chinese)
[2] Vickery P J, Masters F J, Powell M D, et al. Hurricane hazard modeling:The past, present, and future[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(7-8):392-405.
[3] 肖玉凤, 段忠东, 肖仪清, 等. 基于数值模拟的台风危险性分析综述(Ⅰ)——台风风场模型[J]. 自然灾害学报, 2011, 20(2):82-89. XIAO Yufeng, DUAN Zhongdong, XIAO Yiqing, et al. Review of numerical simulation based typhoon hazard analysis:typhoon wind field model[J]. Journal of Natural Disasters, 2011, 20(2):82-89. (in Chinese)
[4] Georgiou P N, Davenport A G, Vickery B J. Design wind speeds in regions dominated by tropical cyclones[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 13(1983):139-152.
[5] Powell M, Soukup G, Cocke S, et al. State of Florida hurricane loss projection model:Atmospheric science component[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(8):651-674.
[6] Meng Y, Masahiro M, Kazuki H. An analytical model for simulation of the wind field in a typhoon boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 56(2-3):291-310.
[7] Snaiki R, Wu T. A linear height-resolving wind field model for tropical cyclone boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171(2017):248-260.
[8] Fang G, Zhao L, Cao S, et al. A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175(2018):77-89.
[9] Kepert J. The Dynamics of Boundary Layer Jets within the Tropical Cyclone Core. Part I:Linear Theory[J]. Journal of the Atmospheric Sciences, 2001, 58(17):2469-2484.
[10] Kepert J, Wang Y. The Dynamics of Boundary Layer Jets within the Tropical Cyclone Core. Part Ⅱ:Nonlinear Enhancement[J]. Journal of Atmospheric Sciences, 2001, 58(58):2485-2501.
[11] Kepert J D. Choosing a boundary layer parameterization for tropical cyclone modeling[J]. Monthly Weather Review, 2012, 140(5):1427-1445.
[12] 黄文锋, 孙志文, 张延. 基于台风风场经验模型的海面风场数值模拟[J]. 自然灾害学报, 2017, 26(1):35-40. HUANG Wenfeng, SUN Zhiwen, ZHANG Yan. Simulation of typhoon wind field over sea surface based on empirical typhoon wind field model[J]. Journal of Natural Disasters, 2017, 26(1):35-40.(in Chinese)
[13] Deardorff J W. Parameterization of the planetary boundary layer for use in general circulation models[J]. Monthly Weather Review, 1972, 100(2):93-106.
[14] Grell G A, Dudhia J, Stauffer D R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)[M]. NCAR Technical Note, 1994.
[15] Hong X, Hong H P, Li J. Solution and validation of a three dimensional tropical cyclone boundary layer wind field model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 193(2019):1-12.
[16] 李军, 游松财, 黄敬峰. 基于GIS的中国陆地表面粗糙度长度的空间分布[J]. 上海交通大学学报(农业科学版), 2006, 24(2):71-75. LI Jun, YOU Songcai, HUANG Jingfeng. Spatial distribution of ground roughness length based on GIS in China[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2006, 24(2):71-75. (in Chinese)
[17] 李沁怡, 蔡旭晖, 宋宇. 中国高分辨率地表粗糙度分布研究[J]. 高原气象, 2014, 33(2):474-482. LI Qinyi, CAI Xuhui, SONG Yu. Research of the distribution of national scale surface roughness length with high resolution in China[J]. Plateau Meteorology, 2014, 33(2):474-482. (in Chinese)
[18] Zhang Q, Yao T, Yue P, et al. The influences of thermodynamic characteristics on aerodynamic roughness length over land surface[J]. ACTA Meteorologica Sinica, 2013, 27(2):249-262.
[19] 马龙, 李颖. 从GTOPO30到SRTM DEM精度研究——以西藏为例[J]. 水土保持通报, 2006, 26(5):71-74. MA Long, LI Ying. Study on accuracy of GTOPO30 and SRTM DEM——a case study of Tibet[J]. Bulletion of Soil and Water Conservation, 2006, 26(5):71-74. (in Chinese)
[20] 刘伟, 高艳红, 李海英, 等. 黑河流域土地覆盖分类数据的建立及其影响的模拟[J]. 高原气象, 2007, 26(2):278-285. LIU Wei, GAO Yanhong, LI Haiying, et al. Landuse patterns of Heihe river basin and its impact modeling[J]. Plateau Meteorology, 2007, 26(2):278-285. (in Chinese)
[21] Smith F B, Carson D J. Some thoughts on the specification of the boundary-layer relevant to numerical modelling[J]. Boundary-Layer Meteorology, 1977, 12(3):307-330.
[22] Feng J, Liu H, Wang L, et al. Seasonal and inter-annual variation of surface roughness length and bulk transfer coefficients in a semiarid area[J]. Science China, 2012, 55(2):254-261.
[23] 肖玉凤, 肖仪清, 段忠东, 等. CE风场模型在中国华南沿海地区的适用性研究[J]. 工程力学, 2010, 27(10):251-256. XIAO Yufeng, XIAO Yiqing, DUAN Zhongdong, et al. The applicability of CE wind-field model in south China coastal region[J]. Engineering Mechanics, 2010, 27(10):251-256. (in Chinese)
[24] Wang J, Bastiaanssen W G M, Ma Y, et al. Aggregation of land surface parameters in the oasis-desert systems of north-west China[J]. Hydroglogical Processes, 1998, 12(1998):2133-2147.
[25] Yang J, Duan Z, Chen Y. A Tropical Cyclone Boundary Layer Model with Vertical Advection Process[M]. The 15th International Conference on Wind Engineering, Beijing, China, 2019.
[26] Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8):1212-1218.
[27] Vickery P J, Wadhera D. Statistical models of holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H wind data[J]. Journal of Applied Meteorology and Climatology, 2008, 47(10):2497-2517.
[28] Stull R B. An Introduction to Boundary Layer Meteorology[M]. Dordrecht, Boston, London:Kluwer Academic Publishers, 1988.
[29] Alpert P. Mesoscale indexing of the distribution of orographic precipitation over high mountains[J]. Journal of Climate and Applied Meteorology, 1986, 25(4):532-545.
[30] Ming Y, Wei Z, Hui Y, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301.

相似文献/References:

[1]魏文秀,张欣,田国强.河北霾分布与地形和风速关系分析[J].自然灾害学报,2010,19(01):049.
 WEI Wen-xiu,ZHANG Xin,TIAN Guo-qiang.Analysis of relation between haze distribution and terrain and wind speed in Hebei Province[J].,2010,19(01):049.
[2]张新主,章新平,张剑民,等.1999-2008年湖南省暴雨特征分析[J].自然灾害学报,2011,20(01):019.
 ZHANG Xin-zhu,ZHANG Xin-ping,ZHANG Jian-min,et al.Characteristic analysis of heavy rainfall in Hunan Provincefrom 1999 to 2008[J].,2011,20(01):019.
[3]刘少军,张京红,何政伟,等.地形因子对海南岛台风降水分布影响的估算[J].自然灾害学报,2011,20(02):196.
 LIU Shao-jun,ZHANG Jing-hong,HE Zheng-wei,et al.Estimate of topography influences on precipitation distribution during typhoon process in Hainan Island[J].,2011,20(01):196.
[4]卫亚星,王莉雯,刘闯.利用遥感手段监测草场退化[J].自然灾害学报,2009,18(02):120.
 WEI Ya-xing,WANG Li-wen,LIU Chuang.Grassland degradation monitoring by remote sensing[J].,2009,18(01):120.
[5]谢立华,赵寒冰.洪涝灾害与地形的相关性研究——以肇庆市为例[J].自然灾害学报,2013,22(06):240.
 XIE Lihua,ZHAO Hanbing.Correlation between flood disaster and topography:a case study of Zhaoqing City[J].,2013,22(01):240.

备注/Memo

备注/Memo:
收稿日期:2020-06-17;改回日期:2020-08-23。
基金项目:国家重点研发计划项目(2018YFC0809403);国家自然科学基金项目(51978223,U17092079)
作者简介:杨剑(1990-),男,硕士研究生,主要从事台风灾害研究.E-mail:yangjian9091@hotmail.com
通讯作者:段忠东(1968-),男,教授,博士,主要从事风工程以及结构健康监测与安全评定研究.E-mail:duanzd@hit.edu.cn
更新日期/Last Update: 1900-01-01