MIAO Huiquan,WANG Naiyu,WANG Yingjun,et al.An urban resilience measurement system based on decomposing post-disaster recovery process[J].,2021,30(01):010-27.[doi:10.13577/j.jnd.2021.0102]





An urban resilience measurement system based on decomposing post-disaster recovery process
缪惠全12 王乃玉12 汪英俊12 林陪晖12
1. 浙江大学 建筑工程学院, 浙江 杭州 310058;
2. 浙江大学 建筑工程学院韧性城市研究中心, 浙江 杭州 310058
MIAO Huiquan12 WANG Naiyu12 WANG Yingjun12 LIN Peihui12
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. Resilient City Research Center, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
urban resilienceresiliencerecoveryresilience evaluationresilience index system
为实现对城市韧性的有效评价,本论文在系统研究国际城市韧性评价体系的基础之上,结合中国城市发展的现状,基于对城市灾后实际恢复过程的系统考察,建立了基于恢复过程的城市韧性评价体系。该评价体系通过解析城市灾后恢复过程的四个阶段:救援阶段(Rescue)、避难阶段(Refuge)、重建阶段(Rebuild)、复兴阶段(Revival),从社区与人口(Community and Population)、政府与管理(Official Organization and Management)、住房与设施(Valuable Housing and Facilities)、经济与发展(Economy and Development)、环境与文化(Renewable Environment and Culture)共五个维度,以62项指标对城市的韧性进行系统分析。这一体系可以简称为城市韧性评价的ReCOVER体系,其中"Re"代表了城市恢复的四个阶段,COVER则分别代表了城市韧性的五个维度。进而以该体系为基础,对我国大陆31个省级行政区域的城市韧性进行了五个维度、四个阶段的实证研究,并对城市韧性的提升策略,给出了分析建议。
Advancing existing resilience metric systems found in literatures, this study develops a recovery-based resilience measurement framework through a thorough decomposition of the recovery processes in China following major disasters. The proposed measurement framework is characterized by a multi-stage and multi-dimensional structure: that is, 1) it measures resilience by investigating post-disaster recovery in four stages: rescue, refuge, rebuild and revival; and 2) through five dimensions: community and population, official organization and management, valuable housing and facilities, economy and development, renewable environment and culture. Such a categorization leads to a selection of 62 indicators to collectively measure a city’s recovery capability and disaster resilience in a holistic manner. This framework is referred herein as ReCOVER, where the "Re" represents the four recovery stages and the "COVER" is the acronym of the five major dimensions of urban resilience. To illustrate the practical implementation of the framework, the ReCOVER is utilized to assess the disaster resilience of the 31 provinces in mainland China and possible resilience enhancement strategies are further discussed.


[1] UN DESA. The speed of urbanization around the world[R]. 2018.
[2] UN DESA. World Urbanization Prospects 2018 Highlights[R]. 2019.
[3] UN DESA. World Urbanization Prospects The 2018 Revision[R]. 2019.
[4] UN DESA. The World’s Cities in 2018 Data Booklet[R]. 2018.
[5] OUYANG M. Review on modeling and simulation of interdependent critical infrastructure systems[J]. Reliability Engineering and System Safety, 2014, 121:43-60.
[6] O’ROURKE T. Critical infrastructure, interdependencies, and resilience[J]. Engineering for the Threat of Natural Disasters, 2007, 37(1):22-29.
[7] O’ROURKE T, JOHNSON L, DAVIS C, et al. Earthquake-Resilient Lifelines:NEHRP Research, Development and Implementation Roadmap[R]. 2014.
[8] Vale L J, Campanella T J. The Resilient City:How Modern Cities Recover From Disaster[M]. New York:Oxford University Press, Inc., 2005.
[9] Chou C C, Tseng S M. Collection and analysis of critical infrastructure interdependency relationships[J]. Journal of Computing in Civil Engineering, 2010, 24(6):539-547.
[10] Mendon? D, Wallace W A. Impacts of the 2001 world trade center attack on New York City critical infrastructures[J]. Journal of Infrastructure Systems, 2006, 12(4):260-270.
[11] Engineered Systems. A New Horizon At Verizon[EB/OL]. (2004)[2020-05-09]. https://www.esmagazine.com/articles/84602-a-new-horizon-at-verizon.
[12] Bostick T P, Connelly E B, Lambert J H, et al. Resilience science, policy and investment for civil infrastructure[J]. Reliability Engineering and System Safety, 2018, 175:19-23.
[13] FEMA. Summary Report on Building Performance Hurricane Katrina 2005[R]. 2006.
[14] Hou A, Benjamin Q, Edward A L, et al. Katrina飓风对新奥尔良市供、排水和污水处理系统的影响[J]. 中国给水排水, 2008, 24(4):1-8. HOU A, BENJAMIN Q, EDWARD A L, et al. Impact of Hurricane Katrina on water supply, drainage and sewage systems in New Orleans[J]. China Water & Wastewater, 2008, 24(4):1-8. (in Chinese)
[15] 王深, 肖渝, 黄群英, 等. 基于社交大数据挖掘的城市灾害分析-纽约市桑迪飓风的案例[J]. 国际城市规划, 2018, 33(4):84-92. WANG Shen, XIAO Yu, HUANG Qunying, et al. Research on urban disaster analysis based on the big data mining of social media:Case study of Hurricane Sandy in New York[J]. Urban Planning International, 2018, 33(4):84-92. (in Chinese)
[16] Marsden J. Improving infrastructure resilience to extreme events:Lessons from Katrina and Sandy[C]//Proceedings of the International Symposium on Sustainable Systems and Technologies, 2016.
[17] 黄弘, 李瑞奇, 范维澄, 等. 安全韧性城市特征分析及对雄安新区安全发展的启示[J]. 中国安全生产科学技术, 2018, 14(7):5-11. HUANG Hong, LI Ruiqi, FAN Weicheng et al. Analysis on characteristics of safety resilient city and enlightenments for safe development of Xiongan New Area[J]. Journal of Safety Science and Technology, 2018, 14(7):5-11. (in Chinese)
[18] 吴浩田, 翟万方. 韧性城市规划理论与方法及其在我国的应用-以合肥市市政设施韧性提升规划为例[J]. 上海城市规划, 2016(1):19-25. WU Haotian, ZHAI Wanfang.Resilient city planning theory and method and its practice in China:A case study of the improvement planning of Hefei infrastructure’s resilience[J]. Shanghai Urban Planning Review, 2016(1):19-25. (in Chinese)
[19] 滕五晓, 罗翔, 毛媛媛. 韧性城市视角的城市安全与综合防灾系统-以上海市浦东新区为例[J]. 城市规划, 2018, 25(3):39-46. TENG Wuxiao, LUO Xiang, MAO Yuanyuan. Research on urban security and disaster prevention planning from the perspective of urban resilience theory:A case of Pudong New Area District, Shanghai[J]. City Planning Review, 2018, 25(3):39-46. (in Chinese)
[20] Jabareen Y. Planning the resilient city:Concepts and strategies for coping with climate change and environmental risk[J]. Cities, 2013, 31:220-229.
[21] 方东平, 李在上, 李楠, 等. 城市韧性——基于"三度空间下系统的系统"的思考[J]. 土木工程学报, 2017, 50(7):1-7. FANG Dongping, LI Zaishang, LI Nan, et al. Urban resilience:a perspective of system of systems in trio spaces[J]. China Civil Engineering Journal, 2017, 50(7):1-7. (in Chinese)
[22] 杨静, 李大鹏, 翟长海, 等. 城市抗震韧性的研究现状及关键科学问题[J]. 中国科学基金, 2019,33(5):525-532. YANG Jing, LI Dapeng, ZHAI Changhai, et al. Key scientific issues in the urban earthquake resilience[J]. Bulletin of National Natural Science Foundation of China, 2019,33(5):525-532. (in Chinese)
[23] Hosseini S, Barker K, Ramirez-Marquez J E. A review of definitions and measures of system resilience[J]. Reliability Engineering and System Safety, 2016, 145:47-61.
[24] Bosetti L, Munshey M, Ivanovic A. Fragility, risk, and resilience:A review of existing frameworks[R]. United Nations University, 2016.
[25] Meerow S, Newell J P, Stults M. Defining urban resilience:A review[J]. Landscape and Urban Planning, 2016, 147:38-49.
[26] CARRI. Definitions of community resilience:An analysis[R]. Community & Regional Resilience Institute, 2013.
[27] X Sanchez A, Van Der Heijden J, Osmond P. The city politics of an urban age:urban resilience conceptualisations and policies[J]. Palgrave Communications, 2018, 25(4):1-12.
[28] Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4):733-752.
[29] FEMA/NIBS. Multi-hazard Loss Estimation Methodology Eathquake Model (Hazus-MH 2.1)[M]. Washington, D.C.:Department of Homeland Security Federal Emergency Management Agency, 2015.
[30] Attary N, Van De Lindt J W, Mahmoud H, et al. Hindcasting community-level building damage for the 2011 Joplin EF5 tornado[J]. Natural Hazards, 2018, 93(3):1295-1316.
[31] Fraunhofer EMI. Analysis of the cascade effects in supply networks-software tool CAESAR[EB/OL]. (2020)[2020-05-11]. https://www.emi.fraunhofer.de/en/business-units/security/research/analysis-of-the-cascade-effects-in-supply-networkssoftwaretool-c.html.
[32] Wang X, Van Dam K H, Triantafyllidis C, et al. Water and energy systems in sustainable city development:A case of sub-saharan Africa[J]. Procedia Engineering, 2017, 198:948-957.
[33] Feng B, Van Dam K H, Guo M et al. Planning of Food-Energy-Water-Waste (FEW2) nexus for sustainable development[J]. BMC Chemical Engineering, 2020, 2(1):1-19.
[34] UNDRR. Uscore2:City-to-City Peer Review Tool[R]. 2018.
[35] Gawler S, Tiwari S. Building urban climate change resilience:A toolkit for local governments[R]. New Delhi, India, 2014.
[36] UNISDR. Disaster Resilience Scorecard for Cities[EB/OL]. United Nations Office for Disaster Risk Reduction, 2017. (Version 2.2)(2017)[2020-05-04]. https://www.undrr.org/publication/disaster-resilience-scorecard-cities.
[37] Cutter S L, Ash K D, Emrich C T. The geographies of community disaster resilience[J]. Global Environmental Change, 2014, 29:65-77.
[38] Arup. City Resilience Index[EB/OL]. City Resilience Framework, 2016. (2016)[2020-05-04]. https://www.arup.com/perspectives/city-resilience-index.
[39] NIST. NIST Special Publication 1190:Community resilience planning guide for buildings and infrastructure systems, volume I[R]. 2016.
[40] Mark Fletcher. The city water resilience approach[R]. 2019.
[41] SPUR. Defining resilience:What San Francisco Needs from Its Seismic Mitigation Policies[R]. San Francisco, California, 2009.
[42] Oregon Seismic Safety Policy Advisory Commission (OSSPAC). The oregon resilience plan:reducing risk and improving recovery for the next Cascadia earthquake and Tsunami[R]. 2013.
[43] Star Communities. STAR Community Rating System[M]. Washington, D.C., 2012.
[44] CDIA. Cdia Project Screening Tool Overview[EB/OL]. (2016)[2020-05-11]. https://screening-tool.cdia.asia/overview/.
[45] JIBC. Aboriginal Resilience Index:Building a Disaster Resilience Plan[EB/OL]. (2018)[2020-05-11]. https://adrp.jibc.ca/wp-content/uploads/2015/04/ARI.pdf.
[46] Walker B, Abel N, Grigg N, et al. An introduction to the Resilience, Adaptation Pathways and Transformation Assessment (RAPTA) Framework[R]. 2015.
[47] CARRI. Community resilience system initiative (CRSI) steering committee final report-A roadmap to increased community resilience[R]. 2011.
[48] Maryland’s Chesapeake & Coastal Service. Maryland’s CoastSmart Communities Scorecard[R]. 2013.
[49] Alloso M I. City Resilience Profiling Tool (CRPT)[EB/OL]. (2013)[2020-05-10]. https://deathmarked.info/hq-and-office-affairs/city-resilience-profiling-tool-crpt.html.
[50] Noaa Office for Coastal Management. Coastal community resilience indicators and rating systems[R]. 2015.
[51] ARUP. Climate Risk and Adaption Framework and Taxonomy, CRAFT[EB/OL]. (2015)[2020-05-10]. https://data.bloomberglp.com/mayors/sites/14/2015/06/C40-CRAFT_comms-brochure-final.pdf.
[52] Cimellaro Gi P, Renschler C, Reinhorn A M, et al. PEOPLES:A framework for evaluating resilience[J]. Journal of Structural Engineering, 2004, 142(10):04016063-1:04016063-3.
[53] Woolf S, Twigg J, Pprikh P, et al. Towards measurable resilience:A novel framework tool for the assessment of resilience levels in slums[J]. International Journal of Disaster Risk Reduction, 2016, 19:280-302.
[54] SFEL. Resilience Atlas[EB/OL]. (2020)[2020-05-11]. https://ssl.sfei.org/news/resilience-atlas-online-portal#sthash.GPKLIKix.rP3sVpz6.dpbs.
[55] 于山, 苏幼坡, 刘天适, 等. 唐山大地震救援与恢复重建[M]. 北京:中国科学技术出版社, 2003. YU Shan, SU Youpo, LIU Tianshi, et al.Tangshan Earthquake Rescue and Reconstruction[M]. Beijing:China Science and Technology Press, 2003. (in Chinese)
[56] 邹其嘉, 王子平, 陈非比, 等. 唐山地震灾区社会恢复与社会问题研究[M]. 北京:地震出版社, 1996. ZOU Qijia, WANG Ziping, CHEN Feibi, et al.Research on Social Recovery and Social Problems in Tangshan Earthquake[M]. Beijing:Seismological Press, 1996. (in Chinese)
[57] 维基百科. 福岛第核电站事故[EB/OL]. (2019)[2020-06-12]. https://zh.wikipedia.org/wiki/福岛第一核电站事故. Wikipedia. Fukushima nuclear power plant accident[EB/OL].(2019)[2020-06-12]. https://zh.wikipedia.org/wiki/福岛第一核电站事故. (in Chinese)
[58] 陈达. 核能与核安全:日本福岛核事故分析与思考[J]. 南京航空航天大学学报, 2012, 44(5):597-602. CHEN Da.Nuclear Energy and Nuclear Safety:Analysis and reflection about Fukushima nuclear accident in Japan[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5):597-602. (in Chinese)
[59] 赵延东. 社会资本与灾后恢复——一项自然灾害的社会研究[J]. 社会学研究, 2007(5):164-245. ZHAO Yandong.Social capital and post-disaster recovery:A social study of natural disasters[J]. Sociological Research, 2007(5):164-245. (in Chinese)
[60] 谭毅. 唐山大地震的灾后恢复重建内容和经验[J]. 城市与减灾, 2009, 65(2):6-9. TAN Yi.The content and experience of post-disaster recovery and reconstruction of the Tangshan earthquake[J]. Urban Disaster Reduction, 2009, 65(2):6-9.. (in Chinese)
[61] 陈世栋. 废墟上的契机-汶川地震灾后重建研究[D]. 北京:中国农业大学, 2014. CHEN Shidong.Opportunity in Ruins:Research on Reconstruction after the Wenchuan Earthquake Disaster[D]. Beijing:China Agricultural University, 2014. (in Chinese)
[62] 吕学静. 日本大地震后的失业问题及就业援助措施[J]. 黑龙江社会科学, 2012, 130(1):101-105. LV Xuejing.Unemployment problems and employment assistance measures after the earthquake in Japan[J]. Heilongjiang Social Sciences, 2012, 130(1):101-105. (in Chinese)
[63] 黄梅. 汶川地震后安置社区就业援助政策研究-以Q安置点为例[D]. 上海:华东理工大学, 2010. HUANG Mei. Employment Assistance Policy Research in Resettlement Communities after Wenchuan Earthquake-The Q shelter an an example[D]. Shanghai:East China University of Science and Technology, 2010. (in Chinese)
[64] 唐志红, 潘宇森, 蒋玥洋. 政府行为对受灾失地农民就业的影响-基于汶川地震十周年阿坝州调研[J]. 当代经济, 2018(13):1-8. TANG Zhihong, PAN Yusen, JIANG Yueyang.The impact of government behavior on the employment of farmers affected by land lost-based on the aba prefecture investigation of the 10th anniversary of Wenchuan Earthquake[J]. Current Economy, 2018(13):1-8. (in Chinese)
[65] 孙艳玲. 汶川地震重灾区产业结构与就业结构关系分析[D]. 成都:西南财经大学, 2011. SUN Yanling.Analysis of the Relationship Between Industrial Structure and Employment Structure in the Earthquake-Stricken Area of Wenchuan[D]. Chengdu:Southwestern University of Finance and Economics, 2011. (in Chinese)
[66] 丁石孙. 城市灾害管理[M]. 北京:群言出版社, 2004. DING Shisun.Urban Disaster Management[M]. Beijing:Qunyan Press, 2004. (in Chinese)
[67] 姜天姣. 北川老县城地震遗址保护与利用研究[D]. 西安:西安建筑科技大学, 2014. JIANG Tianjiao.Research on the Protection and Utilization of Seismic Sites in the Old Town of Beichuan[D]. Xi’an:Xi’an University of Architecture and Technology, 2014. (in Chinese)
[68] Flanagan E, Gregory E W, Hallisey E J, et al. A social vulnerability index for disaster management[J]. Journal of Homeland Security and Emergency Management, 2011, 8(1):1-22.
[69] Saaty T L, Kearns K P. The analytic hierarchy process[A]//Thomas L S, Kevin P K. Analytical Planning The Organization of System[M]. New York:Pergamon Press, 1985:19-62.
[70] 姚天野, 刘威. 基于AHP-熵权法组合赋权的燃气管网风险评估方法研究[J]. 结构工程师, 2019, 35(6):94-101. YAO Tianye, LIU Wei. Risk assessment of gas network based on ahp-entropy weight method[J]. Structural Engineers, 2019, 35(6):94-101. (in Chinese)
[71] Wu G, Duan K, Zuo J, et al. Integrated sustainability assessment of public rental housing community based on a hybrid method of AHP-entropyweight and cloud model[J]. Sustainability, 2017, 9(4):1-25.
[72] Stephanie G. Cronbach’s Alpha:Simple Definition, Use and Interpretation[EB/OL]. (2014)[2020-06-11]. https://www.statisticshowto.com/cronbachs-alpha-spss/.
[73] Chelsea Goforth. Using and Interpreting Cronbach’s Alpha[EB/OL]. (2015)[2020-06-11]. https://data.library.virginia.edu/using-and-interpreting-cronbachs-alpha/.
[74] Gliem J A, Gliem R R. The preparation and structure of metalla-sulphur/selenium nitrogen complexes and cages[C]//Midwest Research to Practice Conference in Adult, Continuing, and Community Education, 2003:82-88.


 XIAO Yuanhao,ZHAO Xudong,ZHU Lihong,et al.Research on the resilience of electricity-gas related lifeline network under earthquake disasters[J].,2021,30(01):132.[doi:10.13577/j.jnd.2021.0114]


基金项目:国家自然科学基金委重点项目(NSFC 51938004);"十三五"国家重点研发计划(2016YFC0800200)
更新日期/Last Update: 1900-01-01