[1]李华,史文兵,朱要强,等.贵州省水城县“7·23”灾难性滑坡形成机制研究[J].自然灾害学报,2020,29(06):188-198.[doi:10.13577/j.jnd.2020.0620]
 LI Hua,SHI Wenbing,ZHU Yaoqiang,et al.Study on the formation mechanism of “7·23” catastrophic landslide in Shuicheng County, Guizhou Province, China[J].,2020,29(06):188-198.[doi:10.13577/j.jnd.2020.0620]
点击复制

贵州省水城县“7·23”灾难性滑坡形成机制研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
188-198
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
Study on the formation mechanism of “7·23” catastrophic landslide in Shuicheng County, Guizhou Province, China
作者:
李华1 史文兵12 朱要强3 彭雄武2
1. 贵州大学 资源与环境工程学院, 贵州 贵阳 550025;
2. 贵州大学 教育部喀斯特地质资源与环境重点实验室, 贵州 贵阳 550025;
3. 贵州省地质环境监测院, 贵州 贵阳 550001
Author(s):
LI Hua1 SHI Wenbing12 ZHU Yaoqiang3 PENG Xiongwu2
1. Resources and Environmental Engineering Department, Guizhou University, Guiyang 550025, China;
2. Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China;
3. Guizhou Geological Environment Monitoring Institute, Guiyang 550001, China
关键词:
水城滑坡高速远程碎屑流成因机制稳定性降雨
Keywords:
Shuicheng landslidehigh-speed and long-runoutdebris flowformation mechanismstabilityrainfall
分类号:
P622.2;X43;X9
DOI:
10.13577/j.jnd.2020.0620
摘要:
2019年7月23日21时20分,贵州省水城县鸡场镇发生灾难性山体滑坡,造成21幢房屋被埋、43人遇难、9人失联。查明该滑坡的特征和形成机制,是解决此类灾难性滑坡早期识别问题的关键。本文采用野外调查和数值分析等手段,在分析了滑坡基本特征和滑坡体结构的基础上,计算公路切坡和持续强降雨因素对滑坡稳定性的影响,进而探讨其形成机制。研究表明:水城滑坡为高速远程滑坡-碎屑流,分为滑源区、铲刮-堆积混合区和主堆积区;滑坡孕育地质体为玄武岩强-全风化层和部分中风化玄武岩,其特殊岩土结构是滑坡发生的内在因素;强降雨和公路切坡为滑坡的关键诱发因素;滑坡主要为强风化层整体失稳,同时存在岩质锁固段的被剪切破坏,为岩土复合型滑坡,其突发性体现为岩质锁固段的突然剪断;滑坡启动机制为滑源区上部牵引滑动-下部推移剧滑。
Abstract:
At 21:20 on July 23, 2019, a catastrophic landslide occurred in Jichang Town, Shuicheng County, Guizhou Province, China, which caused 21 houses buried, 43 people killed, and 9 people missing. To reveal the characteristics and causes of the landslide is the key to recognize the early identification of high-risk and catastrophic landslide. Based on field investigation and numerical analysis, it analyzes the basic characteristics and the geotechnical structure of the landslide. Furthermore, it explores the impact of highway rock cuts and heavy rainfall on the stability of the landslide according to the finite element numerical calculation. Finally, it explores formation mechanism of Shuicheng landslide. The research shows that Shuicheng landslide is a kind of high-speed and long-runout landslide-debris flow, which is divided into source area, scraping-accumulation mixed area and main accumulation zone. The geological bodies of the landslide are strong-completely weathered layer of basalt and part of moderately weathered layer of Basalt. Its special geotechnical structure is the internal factor for landslides; meanwhile, heavy rainfall and highway rock cuts are the key triggering factor of landslides. The landslide is a type of rock-soil composite landslide, which is characterized by the mainly overall instability of the strongly weathered layer and the shear failure of the rock locking section. Its suddenness is reflected by the sudden shearing of the rock locking section. The failure mechanism of the landslide can be summarized as retrogressive sliding in the upper part and then slumping sliding sharply at the lower part of the source area.

参考文献/References:

[1] 张江伟, 李小军, 迟明杰, 等. 滑坡灾害的成因机制及其特征分析[J]. 自然灾害学报, 2015, 24(6):42-49. ZHANG Jiangwei, LI Xiaojun, CHI Mingjie, et al. Analysis of formation mechanism and characteristics of landslide disasters[J]. Journal of Natural Disasters, 2015, 24(6):42-49. (in Chinese)
[2] 陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报·信息科学版, 2019, 44(9):1342-1354. LU Huiyan, LI Weile, XU Qiang, et al. Early detection of landslides in the upstream and downstream areas of the Baige langslide, the Jinsha river based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9):1342-1354. (in Chinese)
[3] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 2019, 44(7):957-966. XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966. (in Chinese)
[4] 许强, 彭大雷, 何朝阳, 等. 突发型黄土滑坡监测预警理论方法研究——以甘肃黑方台为例[J]. 工程地质学报, 2020, 28(1):111-121. XU Qiang, PENG Dalei, HE Chaoyang, el al. Study on theory and method of monitoring and early warning for sudden loess landslide——A case study on the Heifangtai terrace[J]. Journal of Engineering Geology, 2020, 28(1):111-121. (in Chinese)
[5] 王参松, 雷学文, 孟庆山, 等. 贵州红棕色玄武岩风化土强度试验研究[J]. 工程勘察, 2012, 40(1):12-15. WANG Cansong, LEI Xuewen, MENG Qingshan, el al. Testing study on strength of red-brown soil of weathered basalt soil in Guizhou[J]. Geotechnical Investigation & Surveying, 2012, 40(1):12-15. (in Chinese)
[6] 王参松. 贵州玄武岩残积土工程力学特性试验研究[D]. 武汉:武汉科技大学, 2012. WANG Cansong. Testing Study on Engineering Mechanical Properties of Basalt Residual Soil in Guizhou[D]. Wuhan:Wuhan University of Science and Technology, 2012. (in Chinese)
[7] 郭靖. 黔西玄武岩地区滑坡易发性评价及玄武岩风化程度判别研究[D]. 长沙:中南大学, 2012. GUO Jing. Landslide Susceptibility Assessment and Evaluation of Weathering Intensity of Basalt in Western Guizhou[D]. Changsha:Central South University, 2012. (in Chinese)
[8] 刘娇, 粟梅, 张卫华, 等. 六盘水地区玄武岩风化土物理力学性质分析[J]. 山东工业技术, 2017, (10):96. LIU Jiao, SU Mei, ZHANG Weihua, et al. Physical and mechanical properties of basalt weathered soil in Liupanshui area[J]. Shandong Industrial Technology, 2017, (10):96. (in Chinese)
[9] 田小波, 刘鑫. 贵州玄武岩残积土现场渗透试验研究[J]. 土工基础, 2012, 26(4):123-125. TIAN Xiaobo, LIU Xin. In-situ permeability tests in Guizhou basalt residual soils[J]. Soil Engineering and Foundation, 2012, 26(4):123-125. (in Chinese)
[10] 王红晓. 峨眉山玄武岩大规模高速远程崩滑流事件多因素复合约束机制[D]. 昆明:昆明理工大学, 2010. WANG Hongxiao. Multi-factor Restraint Mechanism of Large-scale High Speed Long-runout Collapse-slide-flow Events in Emeishan Baslt[D]. Kunming:Kunming University of Science and Technology, 2010. (in Chinese)
[11] 孙书勤, 黄润秋, 张成江, 等. 峨眉山玄武岩结构面类型及成生规律[J]. 成都理工大学学报(自然科学版), 2015, 42(4):463-475. SUN Shuqin, HUANG Runqiu, ZHANG Chengjiang, et al. Types and formation law of structural planes of Emeishan basalt in Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(4):463-475. (in Chinese)
[12] Guo J, Yi S, Yin Y, et al. The effect of topography on landslide kinematics:a case study of the Jichang town landslide in Guizhou, China[J]. Landslides, 2020, 17(4):959-973.
[13] 许建聪, 尚岳全. 降雨作用下浅层碎石土滑坡解体破坏机理研究[J]. 自然灾害学报, 2008, 17(3):117-124. XU Jiancong, SHANG Yuequan. Study on mechanism of disintegration and failure of shallow debris landslide under rainfall action[J]. Journal of Natural Disasters, 2008, 17(3):117-124. (in Chinese)
[14] 李环禹, 陈朝晖, 范文亮, 等. 区域降雨型滑坡风险分析统计模型研究[J]. 自然灾害学报, 2018, 27(4):103-111. LI Huanyu, CHEN Zhaohui, FAN Wenliang, et al. The statistical risk analysis model of rainfall-induced landslide in large areas[J]. Journal of Natural Disasters, 2018, 27(4):103-111. (in Chinese)
[15] 张友谊, 胡卸文, 朱海勇. 滑坡与降雨关系研究展望[J]. 自然灾害学报, 2007, 16(1):104-108. ZHANG Youyi, HU Xiewen, ZHU Haiyong. Prospect of research on relationship between landslide and rainfall[J]. Journal of Natural Disasters, 2007, 16(1):104-108. (in Chinese)
[16] Lin F, Wu L Z, Huang R Q, et al. Formation and characteristics of the Xiaoba landslide in Fuquan, Guizhou, China[J]. Landslides, 2018, 15(4):669-681.
[17] 张洪, 林锋. 贵州福泉小坝滑坡特征及形成机制初步研究[J]. 科学技术与工程, 2015, 15(35):112-119. ZHANG Hong, LIN Feng. Study on characteristics and formation mechanism of Xiaoba landslide in Fuquan, Guizhou[J]. Science Technology and Engineering, 2015, 15(35):112-119. (in Chinese)
[18] Liu C, Shi B, Zhou J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods:Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1):97-106.
[19] 翟军亮. 非饱和土抗剪强度试验与土水特征曲线反演初探[D]. 大连:大连理工大学, 2019. ZHAI Junliang. Shear Strength Test and Preliminary Study on Retrieving Soil-Water Characteristic Curve for Unsaturated Soils[D].Dailian:Dailian University of Technology, 2019. (in Chinese)
[20] Fredlund D G, Xing A, Huang S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4):533-546.
[21] Genuchten V, Th. M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5):892.
[22] Morgenstern N R, Price V E. The analysis of the stability of general slip surface[J]. Gèotechnique, 1965, 15(1):70-93.

备注/Memo

备注/Memo:
收稿日期:2020-03-29;改回日期:2020-05-19。
基金项目:贵州省教育厅青年科技人才成长项目(KY117);贵州省科技计划项目(黔科合平台人才5781号);贵州大学引进人才科研项目(贵大人基合字(2017)77号)
作者简介:李华(1994-),男,硕士研究生,主要从事地质灾害方面的研究.E-mail:lihua3062@163.com
通讯作者:史文兵(1980-),男,副教授,博士,主要从事地质灾害方面的研究.E-mail:wbshi@gzu.edu.cn
更新日期/Last Update: 1900-01-01