[1]龙建辉,倪向龙,赵邦强,等.黄土丘壑区大型素填场地滑坡的孕滑机理分析[J].自然灾害学报,2020,29(06):180-187.[doi:10.13577/j.jnd.2020.0619]
 LONG Jianhui,NI Xianglong,ZHAO Bangqiang,et al.Mechanism for landslide at a filled loess site in hilly loess area[J].,2020,29(06):180-187.[doi:10.13577/j.jnd.2020.0619]
点击复制

黄土丘壑区大型素填场地滑坡的孕滑机理分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
180-187
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
Mechanism for landslide at a filled loess site in hilly loess area
作者:
龙建辉1 倪向龙14 赵邦强2 张吉宁3
1. 太原理工大学 地震与地质灾害防治研究所, 山西 太原 030024;
2. 山西省第三地质工程勘查院, 山西 榆次 030620;
3. 山西冶金岩土工程勘察有限公司, 山西 太原 030000;
4. 中国建筑西南勘察设计研究院有限公司, 四川 成都 610000
Author(s):
LONG Jianhui1 NI Xianglong14 ZHAO Bangqiang2 ZHANG Jining3
1. Prevention Institute for Earthquake and Geology Hazards of Taiyuan University of Technology, Taiyuan 030024, China;
2. Shanxi Provincial Third Institute of Geological Engineering Investigation, Yuci 030620, China;
3. Shanxi Metallurgical Rock-soil Engineering Reconnaissance General Company, Taiyuan 030000, China;
4. China Southwest Geotechnical Investigation&Design Institute Co., Ltd, Chengdu 610000, China
关键词:
填土滑坡黄土数值模拟滑坡机理渗流场
Keywords:
filled landslideloessnumerical simulationlandslide mechanismseepage field
分类号:
P642;X4;X9
DOI:
10.13577/j.jnd.2020.0619
摘要:
以山西省柳林县焦化厂大型素填黄土滑坡为例,在现场调查的基础上,结合钻探资料对滑坡的形成条件与变形破坏特征进行了分析,揭示了该滑坡的演化过程和形成机理,分为4个阶段,分别为应力重分布、拉张裂缝形成、地下水渗流诱发启动和滑面贯通破坏阶段。并且通过数值模拟分析泉渗流和场地荷载综合因素下的渗流场变化、渗流过程中不同应力环境下边坡的变形特征及其稳定性,将其分析结果与有渗流无荷载、有荷载无渗流条件下边坡的模拟结果进行对比分析,再现了泉渗流场变化特征及一级、二级滑坡在时序上的变形特征。其分析结果表明坡脚为滑坡的变形启动源,坡脚处距地面高程-4 m水位线为安全水位线,地下水高于安全水位线后变形启动源致使剪切带向上牵引发展,场地荷载加剧了边坡的变形、破坏,且地面大荷载的分布部位控制着剪入口的发育位置。
Abstract:
Taking a large-scale filled loess landslide of Liulin coking plant in Shanxi Province as an example, through field investigation and drilling data, the formation conditions and deformation and failure characteristics of the landslide are analyzed, and the evolution process and formation mechanism of the landslide are revealed. The triggering mechanism of landslide can be divided into four stages: stress redistribution stage, tension crack formation stage, start-up stage of groundwater seepage induced and sliding surface through failure stage. And through numerical simulation, the seepage field changes, the seepage field changes under the combined factors of spring seepage and site load, the deformation characteristics and stability of the slope under different stress environments during the seepage process are analyzed.The analysis results are compared with the seepage without load and the load without seepage conditions. The simulation results of the slope were compared and analyzed to reproduce the characteristics of the spring seepage field and the deformation characteristics of the first and second landslides in time sequence. The results show that the slope toe is the starting source of deformation of the landslide. The slope cannot fail when the underground water table is at a depth of 4 m below the ground surface, while the shear zone develops upwards from the slope toe when the underground water table is above this safe level. Loads promote the deformation and failure of slope. Location of large load at the site controls the exit of sliding surface.

参考文献/References:

[1] 龙建辉, 李同录, 李萍. 黄土滑坡滑带土的蠕变特性[J]. 岩土工程学报, 2010, 32(7):1023-1028. LONG Jianhui, LI Tonglu, LI Ping. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7):1023-1028.(in Chinese)
[2] 文高原, 姚鹏运, 曾宪明, 等. 降雨前、后夯实填土边坡破坏模式试验研究[J]. 岩石力学与工程学报, 2005, 24(5):747-754. WEN Gaoyuan, YAO Pengyuan, ZENG Xianming, et al. Testing study on failure mode of filled-soil slope before and after rain[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5):747-754.(in Chinese)
[3] Yeh H F, Wang J, Shen K L, et al. Rainfall characteristics for anisotropic conductivity of unsaturated soil slopes[J]. Environmental Earth Sciences, 2015, 73(12):8669-8681.
[4] 张群, 许强, 李江, 等. 南江9·16群发性缓倾浅层土质滑坡特征与成因机制研究[J]. 自然灾害学报, 2015, 24(3):104-111. ZHANG Qun, XU Qiang, LI Jiang, et al. Study on characteristics and cause mechanism of grouping inclined-shallow soil mass landslides on September 16,2011 in Nanjiang[J].Journal of Natural Disasters, 2015, 24(3):104-111.(in Chinese)
[5] 王晓亮, 李光范, 胡伟, 等. 浅析吊罗山滑坡诱发因素及影响机理[J]. 自然灾害学报, 2014, 23(1):144-148. WANG Xiaoliang, LI Guangfan, HU Wei, et al. Preliminary analysis of inductive factors and the influence mechanism of Diaoluo Mountain landslide[J].Journal of Natural Disasters,2014, 23(1):144-148.(in Chinese)
[6] 栾茂田, 年廷凯. 1976年香港秀茂坪人工填土边坡滑坡灾害评析[J]. 防灾减灾工程学报, 2003, 23(1):114-117. LUAN Maotian, NIAN Tingkai. A case review of landslide of fill slopes at Sau Mau Ping of Hong Kong in 1976[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(1):114-117. (in Chinese)
[7] 亓星, 许强, 彭大雷,等. 地下水诱发渐进后退式黄土滑坡成因机理研究——以甘肃黑方台灌溉型黄土滑坡为例[J]. 工程地质学报, 2017, 25(1):147-153. QI Xing, XU Qiang, PENG Dalei, et al. Mechanism of gradual retreat loess landslide caused by groundwater:a case study of the irrigation loess landslide in Heifangtai,Gansu Province[J]. Journal of Engineering Geology, 2017, 25(1):147-153. (in Chinese)
[8] 张媛, 李文彦, 宋丙辉, 等. 甘肃东乡大型填土黄土滑坡失稳机制[J]. 兰州大学学报:自然科学版, 2014, 50(4):484-489. ZHANG Yuan, LI Wenyan, SONG Binghui, et al. Instability mechanism of a large filled loess landslide in Dongxiang County, Gansu Province[J]. Journal of Lanzhou University (Natural Sciences), 2014, 50(4):484-489. (in Chinese)
[9] Zhu D, Yan E, Hu G, et al. Revival deformation mechanism of Hefeng landslide in the three gorges reservoir based on FLAC3D software[J]. Procedia Engineering, 2011, 15:2847-2851.
[10] Pan P, Shang Y Q, Lü, Qing, et al. Periodic recurrence and scale-expansion mechanism of loess landslides caused by groundwater seepage and erosion[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2):1143-1155.
[11] Fredlund D G,Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. New York:Wiley Inter,1993:1-21.
[12] 王全凤, 潘树来. 深基坑开挖全过程的数值模拟及工程实践[J]. 计算力学学报, 2011, 28(6):943-948. WANG Quanfeng, PAN Shulai. Numerical simulation for the whole process of deep pit excavation and its engineering practice[J]. Chinese Journal of Computational Mechanics, 2011, 28(6):943-948. (in Chinese)
[13] Gallace C, Kodikara J, Uchimura T. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes[J]. Soils and Foundations, 2013, 53(3):41-430.
[14] 李迪, 李亦明, 张漫. 堆积体滑坡滑带启动变形分析[J]. 岩石力学与工程学报, 2006, 52(增2):3879-3884. LI Di, LI Yiming, ZHANG Man. Analysis of original deformation for sliding zone of talus slide[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 52(S2):3879-3884. (in Chinese)

相似文献/References:

[1]康春国,李长安,谢远云,等.哈尔滨地区风尘黄土重矿物特征及物源分析[J].自然灾害学报,2011,20(04):043.
 KANG Chun-guo,LI Chang-an,XIE Yuan-yun,et al.Heavy mineral characteristics of eolian loess deposits in Harbin area and its provenance implications[J].,2011,20(06):043.
[2]裘国荣,石玉成,刘红玫,等.黄土震陷的微结构损伤模型[J].自然灾害学报,2011,20(05):210.
 QIU Guo-rong,SHI Yu-cheng,LIU Hong-mei,et al.Microstructural damage model of seismic subsidence of loess[J].,2011,20(06):210.
[3]巨玉文,齐琼,董震,等.山西西部地区黄土地质灾害与降雨的关联性分析[J].自然灾害学报,2016,25(01):081.[doi:10.13577/j.jnd.2016.0110]
 JU Yuwen,QI Qiong,DONG Zhen,et al.Analysis of relevance between loess geological disasters and rainfalls in the western area of Shanxi Province[J].,2016,25(06):081.[doi:10.13577/j.jnd.2016.0110]

备注/Memo

备注/Memo:
收稿日期:2019-12-26;改回日期:2020-05-15。
基金项目:山西省自然科学基金资助项目(201801D121033,201701D121015)
作者简介:龙建辉(1972-),男,副教授,博士,主要从事地质灾害研究.E-mail:longjianhei@163.com
通讯作者:倪向龙(1994-),男,硕士研究生,主要从事环境与灾害地质研究.E-mail:nixianglong@163.com
更新日期/Last Update: 1900-01-01