[1]李山,仵苗,李静思,等.透水砖与垫层入渗特性对城市降雨产流的影响研究[J].自然灾害学报,2020,29(06):147-157.[doi:10.13577/j.jnd.2020.0615]
 LI Shan,WU Miao,LI Jingsi,et al.Study on influence of infiltration characteristics of pervious brick and cushion on rainfall runoff[J].,2020,29(06):147-157.[doi:10.13577/j.jnd.2020.0615]
点击复制

透水砖与垫层入渗特性对城市降雨产流的影响研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
147-157
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
Study on influence of infiltration characteristics of pervious brick and cushion on rainfall runoff
作者:
李山 仵苗 李静思 刘腾
西安理工大学 陕西省西北旱区生态水利工程重点实验室, 陕西 西安 710048
Author(s):
LI Shan WU Miao LI Jingsi LIU Teng
State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
关键词:
透水铺装透水砖垫层结构入渗率雨强降雨产流
Keywords:
permeable pavementwater permeable brickcushion structureinfiltration raterain strongrunoff generation
分类号:
X523;X43;X9
DOI:
10.13577/j.jnd.2020.0615
摘要:
为评估透水铺装应用场地的适配性及减灾效果,本文通过室内试验、模型模拟与理论分析的方法,研究了西安地区不同透水砖铺装面层(陶瓷透水砖和生态透水砖)与垫层(均质土、15%和30%碎石混合、砂基四种垫层)组合下的入渗特性及其对降雨径流的调节作用。结果表明:①陶瓷透水砖和生态透水砖都有良好的入渗性能,垫层入渗快慢顺序为砂基垫层、15%碎石混合垫层、均质土垫层和30%碎石混合垫层。砾石含量的适当增加有助于水分的入渗,但是当砾石含量持续增加会阻碍降雨入渗。②透水铺装入渗分透水砖入渗和垫层入渗2个阶段,透水砖入渗阶段累积入渗量与时间符合线性关系;垫层入渗阶段可用Philip公式和Kostiakov模型很好的模拟,且Philip公式拟合结果略好于Kostiakov模型。③两年一遇降雨条件下,透水铺装不会产流;五年一遇降雨频率下仅有30%碎石混合垫层下的透水铺装产流;十年一遇降雨频率下,15%碎石混合垫层、均质土垫层和30%碎石混合垫层均产流;砂基垫层在3种降雨下均不产流。试验所用透水砖及垫层结构均能满足西安地区年径流总量控制率(80%~85%)要求。
Abstract:
In order to evaluate the suitability of the application site for pervious pavement and the effect of disaster reduction, the infiltration characteristics and the regulation effect on the rainfall runoff of permeable brick pavements which composed of different pavement layers (ceramic pervious brick and ecological pervious brick) and different cushion layers (homogeneous soil, 15% and 30% gravel mixing, sand based four cushion) in Xi’an are studied with the methods of indoor test, model simulation and theoretical analysis. The results show that: ① Both ceramic permeable bricks and ecological permeable bricks have good infiltration performance; and the order of infiltration of the cushion layer is sand-based cushion, 15% gravel mixed cushion, homogeneous soil cushion and 30% gravel mixed cushion; a proper increase in gravel content contributes to the infiltration of water, but if it continuous increase will have a negative effect on rainfall infiltration. ② The permeable brick pavement infiltration is divided into brick and cushion layer infiltration. The relationship between cumulative infiltration and time in the infiltration stage of permeable bricks is linear. The infiltration process of cushion structure infiltration stage can be both described by Philip equation and Kostiakov infiltration model and the Philip formula fitting results are slightly better than the Kostiakov model. ③ The permeable pavement will not produce flow under the once-two-year rainfall condition; it is only 30% stone-soil mixture cushion of the permeable pavement had runoff under the once-five-year rainfall condition; the permeable pavements (with homogeneous soil, 15% and 30% stone-soil mixtures cushion) were all produced runoff under the once-ten-year rainfall condition; the permeable pavement with sand-based cushion did not produce flow under all three frequency of rainfall. The permeable bricks and cushion structures of the test can meet the requirements of the Xi’an annual total runoff control rate (80%~85%).

参考文献/References:

[1] 李静思, 李山, 李智录, 等.基于协同改造理念的城市雨洪削减效果模拟研究[J].自然灾害学报, 2019, 28(4):79-89. LI Jingsi, LI Shan, LI Zhilu, et al. Simulation study on urban stormwater reduction effect based on synergistic transformation concept[J]. Journal of Natural Disasters, 2019, 28(4):79-89. (in Chinese)
[2] 麻蓉, 白涛, 黄强, 等. MIKE 21模型及其在城市内涝模拟中的应用[J]. 自然灾害学报, 2017, 26(4):172-179. MA Rong, BAI Tao, HUANG Qiang, et al. MIKE 21 model and its application on urban waterlogging simulation[J]. Journal of Natural Disasters, 2017, 26(4):172-179. (in Chinese)
[3] 王茜, 杨小柳, 徐超伟, 等. 基于土地利用的城市内涝交通风险评价[J]. 自然灾害学报, 2018, 27(5):197-204. WANG Xi, YANG Xiaoliu, XU Chaowei, et al.Landuse-based analysis of waterlogging traffic risk[J].Journal of Natural Disasters, 2018,27(5):197-204. (in Chinese)
[4] 韦甦, 吴力平, 李军. 透水砖应用于海绵城市建设的若干问题探讨[J]. 中国给水排水, 2017, 33(12):1-5. WEI Su, WU Liping, LI Jun.Discussion on the application of water permeable brick in the construction of sponge city[J]. China Water and Wastewater, 2017, 33(12):1-5. (in Chinese)
[5] Jain A K, Chouhan J S. Effect of shape of aggregate on compressive strength and permeabilityproperties of pervious concrete[J]. Int J Adv Eng Res Stud, 2011, 1:120-126.
[6] Kevern J T, Wang K, Schaefer V R. Effect of coarse aggregate on the freeze-thaw durability of pervious concrete[J]. Journal of Materials in Civil Engineering, 2009, 22(5):469-475.
[7] Nguyen D H, Sebaibi N, Boutouil M, et al. A modified method for the design of pervious concrete mix[J]. Construction and Building Materials, 2014, 73:271-282.
[8] Deo O, Neithalath N. Compressive response of pervious concretes proportioned for desired porosities[J]. Construction and Building Materials, 2011, 25(11):4181-4189.
[9] Crouch L K, Pitt J, Hewitt R. Aggregate effects on pervious portland cement concrete static modulus of elasticity[J]. Journal of Materials in Civil Engineering, 2007, 19(7):561-568.
[10] Huang B, Wu H, Shu X, et al. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete[J]. Construction and Building Materials, 2010, 24(5):818-823.
[11] ASTM C448, ASTM Standard Classification for Sizes of Aggregate for Road and Bridge Construction[S]. West Conshohocken, PA 19428-2959, United States of America, 2012.
[12] ASTM C33/C33M-13, ASTM Standard Specification for Concrete Aggregates[S]. West Conshohocken, PA 19428-2959, United States of America, 2013.
[13] Deo O. Influenceof Material Structure on the Structural and Environmental Properties of Pervious Concretes[D]. Clarkson University, USA, 2011.
[14] Torres A, Hu J, Ramos A. The effect of the cementitious paste thickness on the performance of pervious concrete[J]. Construction and Building Materials, 2015, 95:850-859.
[15] LIM E, TAN K H, FWA T F. Effect of mix proportion on strength and permeability of pervious concrete for use in pavement[J]. Journal of the Eastern Asia Society for Transportation Studies, 2013, 10:1565-1575.
[16] Neithalath N, Sumanasooriya M S, Deo O. Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction[J]. Materials Characterization, 2010, 61(8):802-813.
[17] Ghafoori N, Dutta S. Laboratory investigation of compacted no-fines concrete for paving materials[J]. Journal of Materials in Civil Engineering, 1995, 7(3):183-191.
[18] Lian C, Zhuge Y, Beecham S. Numerical simulation of the mechanical behaviour of porous concrete[J]. Engineering Computations, 2011, 28(8):984-1002.
[19] Gesolu M, Güneyisi E, Khoshnaw G, et al. Investigating properties of pervious concretes containing waste tire rubbers[J]. Construction and Building Materials, 2014, 63:206-213.
[20] M.A. Pindado, A. Aguado, A. Josa. Fatigue behavior of polymer modified porous concretes[J]. Cement and Concrete Research, 1999, 29:1077-1083.
[21] Chindaprasirt P, Hatanaka S, Chareerat T, et al. Cement paste characteristics and porous concrete properties[J]. Construction and Building materials, 2008, 22(5):894-901.
[22] Coughlin J P, Campbell C D, Mays D C. Infiltration and clogging by sand and clay in a pervious concrete pavement system[J]. Journal of Hydrologic Engineering, 2011, 17(1):68-73.
[23] Kayhanian M, Anderson D, Harvey J T, et al. Permeability measurement and scan imaging to assess clogging of pervious concrete pavements in parking lots[J]. Journal of Environmental Management, 2012, 95(1):114-123.
[24] Wise S, Braden J, Ghalayini D, et al. Integrating valuation methods to recognize green infrastructure’s multiple benefits[M]//Low Impact Development 2010:Redefining Water in the City, 2010:1123-1143.
[25] 崔新壮, 张炯, 黄丹, 等. 暴雨作用下透水混凝土路面快速堵塞试验模拟[J]. 中国公路学报, 2016, 29(10):1-11, 19. CUI Xinzhuang, ZHANG Jiong, HUANG Dan, et al. Experimental simulation of rapid clogging of pervious concrete pavement under effects of rainstorm[J]. China Journal of Highway and Transport, 2016, 29(10):1-11, 19. (in Chinese)
[26] Thomle J N. The Declining pH of Waters Exposed to Pervious Concrete[D]. Washington State University, 2010.
[27] Radlińska A, Welker A, Greising K, et al. Long-term field performance of pervious concrete pavement[J]. Advances in Civil Engineering, 2012.
[28] Lee M G, Tia M, Chuang S H, et al. Pollution and purification study of the pervious concrete pavement material[J]. Journal of Materials in Civil Engineering, 2013, 26(8):04014035.
[29] Collins K A, Hunt W F, Hathaway J M. Evaluation of various types of permeable pavements with respect to water quality improvement and flood control[C]//World Environmental and Water Resources Congress, 2007:Restoring Our Natural Habitat. 2007:1-12.
[30] Collins K A, Hunt W F, Hathaway J M. Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina[J]. Journal of Hydrologic Engineering, 2008, 13(12):1146-1157.
[31] Hunt B, Stevens S, Mayes D. Permeable pavement use and research at two sites in Eastern North Carolina[M]//Global Solutions for Urban Drainage, 2002:1-10.
[32] 夏远芬, 万玉秋. 居住小区道路雨水径流消减潜力分析[J]. 环境保护科学, 2008, 34(2):35-37. XIA Yuanfen, WAN Yuqiu. Analysis on potential of decreasing road runoff in residential areas[J]. Environmental Protection Science, 2008, 34(2):35-37. (in Chinese)
[33] 金建荣, 李田, 王圣思, 等. 高地下水位地区透水停车场的水文控制效果[J]. 环境科学, 2017, 38(9):3689-3695. JIN Jianrong, LI Tian, WANG Shengen, et al. Hydrological performance assessment of permeable parking lots in high waterc areas[J]. Environmental Science, 2017, 38(9):3689-3695. (in Chinese)
[34] 金建荣, 李田, 时珍宝. 高地下水位地区透水铺装控制径流污染的现场实验[J]. 环境科学, 2017, 38(6):2379-2384. JIN Jianrong, LI Tian, SHI Zhenbao. Performance of applying scale permeable pavements for control of runoff pollution in an area with high groundwater level[J]. Environmental Science, 2017, 38(6):2379-2384. (in Chinese)
[35] 王波, 霍亮, 高建明. 透水性地砖蒸发试验研究[J]. 四川建筑科学研究, 2004, 30(3):102-104. WANG Bo, HUO Liang, GAO Jianming. Evaporating test researchs of porous brick[J]. Build Ding Science Research of Sichuan, 2004, 30(3):102-104. (in Chinese)
[36] 吴耀珊, 计波, 刘卓成. 透水砖材料和下垫面对城市雨洪的影响[J].中国给水排水, 2018, 34(21):133-138. WU Yaoshan, JI Bo, LIU Zhuocheng. Influence of permeable brick material and underlying surface on urban stormwater[J]. China water and wastewater, 2018, 34(21):133-138. (in Chinese)
[37] 孙召东, 宋洪庆, 张海龙, 等. 海绵城市透水砖铺装雨水入渗模型及产流分析[J].环境工程, 2019, 37(7):39-46. SUN Zhaodong, SONG Hongqing, ZHANG Hailong, et al. Infiltration model and runoff analysis for porous brick pavement for sponge city construction[J]. Environmental Engineering, 2019, 37(7):39-46. (in Chinese)
[38] 谢婉丽, 王延寿, 马中豪, 等. 黄土湿陷机理研究现状及发展趋势[J]. 现代地质, 2015, 29(2):397-407. XIE Wanli, WANG Yanshou, MA Zhonghao, et al. Research status and prospect of loess collapsibility mechanism[J]. Geoscienec, 2015, 29(2):397-407. (in Chinese)
[39] 左富云. 建筑垃圾在透水砖及城市道路上的应用[D]. 昆明理工大学, 2008. ZUO Fuyun. Application of Construction Waste on Permeable Bricks and Urban Roads[D]. Kunming University of Science and Technology, 2008. (in Chinese)
[40] 环卫科技网. 西安市建筑垃圾资源化利用现状调查[EB/OL]. http://www.cn-hw.net/html/sort069/201606/53604.html, 2016-6-2. Environmental Sanitation Technology Network. Investigation on the Status Quo of Resource Utilization of Construction Waste in Xi’an[EB/OL]. http://www.cn-hw.net/html/sort069/201606/53604.htm/, 2016-6-2.(in Chinese)
[41] 杜朝华. 建筑垃圾再生骨料混凝土及构件受力性能研究[D]. 郑州大学, 2012. DU Chaohua. Study on the Mechanical Properties of Recycled Aggregate Concrete and Members with Construction Waste[D]. Zhengzhou University, 2012. (in Chinese)
[42] 刘富业. 利用建筑垃圾制作生态透水砖研究[D]. 广东工业大学, 2012. LIU Fuye. Studies on Ecological Pervious Brick by making use of Construction Waste[D]. Guangdong University of Technology, 2012. (in Chinese)
[43] 邵明安, 王全九, 黄明斌. 土壤物理学[M]. 高等教育出版社, 2006. SHAO Mingan, WANG Quanjiu, HUANG Mingbin. Soil Physics[M].Higher Education Press, 2006.(in Chinese)
[44] 王文焰, 张建丰, 汪志荣, 等. 黄土中砂层对入渗特性的影响[J]. 岩土工程学报, 1995, 17(5):33-41. WANG Wenyan, ZHANG Jianfeng, WANG Zhirong, et al. Influence of sand layer in loess on infiltration characteristics[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5):33-41. (in Chinese)
[45] 王文焰, 张建丰, 汪志荣, 等. 砂层在黄土中的阻水性及减渗性的研究[J]. 农业工程学报, 1995, 11(1):104-110. WANG Wenyan, ZHANG Jianfeng, WANG Zhirong, et al. Experiment and study on water-tightness and infiltration reduction of sand layer in loess soils[J]. Transactions of the Chinese Society of Agricultural Engineering, 1995, 11(1):104-110. (in Chinese)
[46] 王文焰, 张建丰, 汪志荣, 等. 砂层在黄土中的减渗作用及其计算[J]. 水利学报, 2005, 36(6):650-655. WANG Wenyan, ZHANG Jianfeng, WANG Zhirong, et al. Infiltration reduction effect of sand layer in loess[J]. Journal of Hydraulic Engineering, 2005, 36(6):650-655.
[47] Epstein E, Grant W J, Struchtemeyer R A. Effects of stones on runoff, erosion, and soil moisture1[J]. Soil Science Society of America Journal, 1966, 30(5):638-640.
[48] Abrahams A D, Parsons A J. Relation between infiltration and stone cover on a semiarid hillslope, southern Arizona[J]. Journal of Hydrology, 1991, 122(1-4):49-59.
[49] Poesen J W A, Torri D. Mechanisms governing incipient motion of ellipsoidal rock fragments in concentrated overland flow[J]. Earth Surface Processes and Landforms, 1989, 14(6):469-480.
[50] Box J E. The effects of surface slaty fragments on soil erosion by water1[J]. Soil Science Society of America Journal, 1981, 45(1):111-116.
[51] Valentin C, Casenave A. Infiltration into sealed soils as influenced by gravel cover[J]. Soil Science Society of America Journal, 1992, 56(6):1667-1673.
[52] Wilcox B P, Wood M K. Factors influencing interrill erosion from semiarid slopes in New Mexico[J]. Journal of Range Management, 1989:66-70.
[53] 周蓓蓓. 土石混合介质水分溶质运移的试验研究[D]. 陕西:西北农林科技大学, 2009. ZHOU Beibei. Experimental Study on the Water Movement and Solute Transport of the Soil-stone Mixtures[D]. Northwest A&F University, 2009. (in Chinese)
[54] 张彬鸿, 李家科, 李亚娇. 低影响开发(LID)透水铺装技术研究进展[J]. 水资源与水工程学报, 2017, 28(4), 137-144. ZHANG Binhong, LI Jiake, LI Yajiao. Progress in the permeable pavement technology for Low-impact Development(LID)[J]. Journal of Water Resources & Water Engineering, 2017, 28(4), 137-144. (in Chinese)
[55] 岑国平, 沈晋, 范荣生.城市设计暴雨雨型研究[J].水科学进展, 1998(1):42-47. CEN Guoping, SHEN Jin, FAN Rongsheng. Research on rainfall pattern of urban design storm[J]. Journal of Hydraulic Engineering, 1998, (1), 42-47. (in Chinese)
[56] 王宏宇, 吴昊, 马宏伟, 等. 海绵城市建设中三种类型透水路面削减内涝效果研究[J].中国给水排水, 2019, 35(12):44-48. WANG Hongyu, WU Hao, MA Hongwei, et al. Study on waterlogging reduction effect of three types of permeable pavements in sponge city construction[J]. China Water and Wastewater, 2019, 35(12):44-48. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-12-12;改回日期:2020-07-06。
基金项目:陕西省教育厅自然科学专项(18JK0573)
作者简介:李山(1989-),男,讲师,博士,主要从事水资源管理与环境保护方面的研究.E-mail:shanli@xaut.edu.cn
更新日期/Last Update: 1900-01-01