[1]王丽娟,马超,苗绿.坡面泥石流形态和堆积特征研究[J].自然灾害学报,2020,29(06):098-106.[doi:10.13577/j.jnd.2020.0610]
 WANG Lijuan,MA Chao,MIAO Lv.Morphological and depositional characteristics of slope debris flow[J].,2020,29(06):098-106.[doi:10.13577/j.jnd.2020.0610]
点击复制

坡面泥石流形态和堆积特征研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
098-106
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
Morphological and depositional characteristics of slope debris flow
作者:
王丽娟 马超 苗绿
北京林业大学 水土保持学院, 北京 100083
Author(s):
WANG Lijuan MA Chao MIAO Lv
School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
关键词:
滑坡型坡面泥石流冲蚀型坡面泥石流形成类型地形陡峭指数泥石流侵蚀
Keywords:
landslide-type slope debris flowerosion-type slope debris flowformation typeruggedness numberdebris flow erosion
分类号:
P642.23;X4;X9
DOI:
10.13577/j.jnd.2020.0610
摘要:
坡面泥石流是发育在陡峭沟、坡中的不稳定岩土体失稳后转化形成,具有分布广、数量多等特点。为了有效区分滑坡型和冲蚀型坡面泥石流,对研究区进行了野外调查和无人机拍摄,首先分析了两种类型泥石流的形态特征和颗粒组成差异;再将地形陡峭指数和堆积区坡度、流动路径长度、流动比结合起来进一步分析两种坡面泥石流流动特征,并对地形陡峭指数进行了修正。结果表明:冲蚀型坡面泥石流堆积物以粗颗粒为主,滑坡型泥石流堆积物以细颗粒为主;冲蚀型坡面泥石流堆积扇坡度要高于滑坡型泥石流,但是流动性要稍弱于滑坡型泥石流。通过修正地形陡峭指数(R)对滑坡型和冲蚀型泥石流进行了有效区分,区分两种坡面泥石流的阈值为R=4。本研究结果有助于深入研究坡面泥石流的地形条件以及流动性特征。
Abstract:
Slope debris flow commonly originates from the mass failures on steep terrain, which has the characteristics of wide distribution and large quantity. In order to distinguish the types of landslide-type and erosion-type slope debris flow, in this work, the grain component and morphological characteristics of the two types of slope debris flows were analyzed by field investigation and UAV method. The ruggedness number, together with fan gradient, length of flow path and mobility index, is used to analyze the mobility characteristics of the two flows,and then modified it. The results show that the erosion-type slope debris flow deposits slope mainly consists of coarse particles, while the landslide-type slope debris flow deposits are composed of fine particles. The depositional fan of erosion-type debris flow is steeper than that of landslide-type, while the mobility is slightly weaker. A new index, equaling to the product of ruggedness number and wide ratio, is propose to distinguish the tow flow types by the threshold of R=4. The results of this work can be helpful for further knowledge about the topography and mobility of slope debris flow.

参考文献/References:

[1] 康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京:科学出版社, 2004. KANG Zhicheng, LI Zhuofen, MA Ainai, et al. Study of Debris Flow in China[M]. Beijing:Science Press, 2004.(in Chinese)
[2] 张研, 吴康丽, 邓雪沁, 等. 基于相关向量机的蒋家沟泥石流平均流速预测模型[J]. 自然灾害学报, 2019, 28(6):146-153. ZHANG Yan, WU Kangli, DENG Xueqin, et al. Prediction model of Jiangjiagou debris flow average velocity based on relevance vector machine[J]. Journal of Natural Disasters, 2019, 28(6):146-153.(in Chinese)
[3] 王之君, 拓万全, 李仁年, 等. 粘性泥流沟道内堆积特性的直槽概化模型试验分析[J]. 自然灾害学报, 2015, 24(5):83-91. WANG Zhijun, TUO Wanquan, LI Rennian, et al. Straight flume generalized model tests of accumulation characteristics of viscous mudflows in channel[J]. Journal of Natural Disasters, 2015, 24(5):83-91.(in Chinese)
[4] 马超, 胡凯衡, 田蜜. 震后泥石流沟松散物质量与最大冲出总量的关系[J]. 自然灾害学报, 2013, 22(6):76-84. MA Chao, HU Kaiheng, TIAN Mi. Post-earthquake relationships of maximum runout amount and loose matter mass in debris flow gully[J]. Journal of Natural Disasters, 2013, 22(6):76-84.(in Chinese)
[5] 吴欢, 龙孝. 湖南韶山市坡面型泥石流的形成机理及演化过程[J]. 矿产勘探, 2019, 10(1):148-151. WU Huan, LONG Xiao. Formation mechanism and evolution process of slope debris flow in Shaoshan[J]. Mineral Exploration, 2019, 10(1):148-151.(in Chinese)
[6] 吴凯, 倪万魁, 武鹏. 宁夏隆德县坡面型泥石流形成机理分析[J]. 中国地质灾害与防治学报, 2016, 27(1):49-61. WU Kai, NI Wankui, WU Peng. Analysis on the formation mechanism of debris flow on slope in Longde county of Ningxia[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(1):49-61.(in Chinese)
[7] 李树德. 滑坡型泥石流形成机理[J]. 北京大学学报(自然科学版), 1998, 34(4):519-522. LI Shude. Formation mechanism of the landslide-type debris flow[J]. Universitatis Pekinensis (Scientiarum Naturalium), 1998, 34(4):519-522.(in Chinese)
[8] 王士革. 山坡型泥石流的危害与防治[J]. 中国地质灾害与防治学报, 1999, 10(3):46-51. WANG Shige. Hazard of debris flow on slope and its control[J]. The Chinese Journal of Geological Hazard and Control, 1999, 10(3):46-51.(in Chinese)
[9] 杨为民, 吴树仁, 张永双, 等. 陕西宁陕县城坡面型泥石流形成条件及其诱发机制[J]. 地质力学学报, 2006, 12(2):219-226. YANG Weimin, WU Shuren, ZHANG Yongshuang, et al. Formation conditions of slope type mudflow in Ningshaan county, southern Shaanxi, and its inducing mechanism[J]. Journal of Geomechanics, 2006, 12(2):219-226.(in Chinese)
[10] 姚一江. 坡面泥石流的类型、分布规律及防治[J]. 中国水土保持, 1991, (9):24-25. YAO Yijiang. Type and distribution of debris flow on slope surface and its prevention[J]. Soil and Water Conservation in China, 1991, (9):24-25.(in Chinese)
[11] Andrew J W. Delineating debris-flow hazards on alluvial fans in the Coromandel and Kaimai regions, New Zealand, using GIS[D]. New Zealand:University of Canterbury Geological Sciences, 2007.
[12] ZHOU Wei, TANG Chuan, CHANG Ming, et al. A rapid method to identify the potential of debris flow development induced by rainfall in the catchments of the Wenchuan earthquake area[J]. Landslides, 2015, 13(5):1243-1259.
[13] Scheidl C, Rickenmann D. Empirical prediction of debris-flow mobility and deposition on fans[J]. Earth Surface Processes and Landforms, 2010, 35(2):157-173.
[14] Melton M A. The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona[J]. Journal of Geology, 1965, 73(1):1-38.
[15] Jackson L, Kostaschuk R A, Macdonald G M. Identification of debris-flow hazard on alluvial fans in the Canadian Rocky Mountains[J]. Reviews in Engineering Geology, 1987, 7:115-124.
[16] Bovis M J, Jakob M. The role of debris supply conditions in predicting debris flow activity[J]. Earth Surface Processes and Landforms, 1999, 24(11):1039-1054.
[17] Wilford D J, Sakals M E, Innes J L, et al. Recognition of debris-flow, debris-flood and flood hazard through watershed morphometrics[J]. Landslides, 2004, 1(1):61-66.
[18] De Scally F A, Owens I F. Morphometric controls and geomorphic response on fans in the Southern Alps, New Zealand[J]. Earth Surface Processes and Landforms, 2004, 29(3):311-322.
[19] 郭富赟, 孟兴民, 黎志恒, 等. 天水市"7·25"群发性地质灾害特征及成因[J]. 山地学报, 2015, 33(1):100-107. GUO Fuyun, MENG Xingmin, LI Zhiheng, et al. Characteristics and causes of assembled geo-hazards induced by the rainstorm on 25th July 2013 in Tianshui City, Gansu, China[J]. Mountain Research, 2015, 33(1):100-107.(in Chinese)
[20] 于国强, 张茂省, 胡炜. 天水市"7.25"群发性山洪地质灾害发育特征及成因分析[J]. 西北地质, 2014, 47(3):187-191. YU Guoqiang, ZHANG Maosheng, HU Wei. Analysis on the development characteristics and hydrodynamic conditions for the massive debris flow in Tianshui[J]. Northwestern Geology, 2014, 47(3):187-191. (in Chinese)
[21] 李树德, 曾思伟. 论泥石流的另一种类型-滑坡型泥石流[J]. 水土保持学报, 1988, 2(4):66-71. LI Shude, ZENG Siwei. On another type of debris flow-the landslide-type debris flow[J]. Journal of Soil and Water Conservation, 1988, 2(4):66-71.(in Chinese)
[22] 杨为民, 吴树仁, 张永双, 等. 陕西宁陕县城坡面型泥石流形成条件及其诱发机制[J]. 地质力学学报, 2006, 12(2):219-226. YANG Weimin, WU Shuren, ZHANG Yongshuang, et al. Formation conditions of slope type mudflow in Ningshaan County, Southern Shaanxi, and its inducing mechanism[J]. Journal of Geomechanics, 2006, 12(2):219-226.(in Chinese)
[23] De Scally F A, Owens I F, Louis J. Controls on fan depositional processes in the schist ranges of the Southern Alps,New Zealand, and implications for debris-flow hazard assessment[J]. Geomorphology, 2010, 122:99-116.
[24] Theule J I, Lie bault F, Loye A, et al. Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France[J]. Natural Hazard and Earth System Sciences, 2012, 12(3):731-740.
[25] Kostaschuk R A, Macdonald G M, Putnam P E. Depositional process and alluvial fan-drainage basin morphometric relationships near Banff, Alberta, Canada[J]. Earth Surface Processes and Landforms, 1986, 11(5):471-484.

备注/Memo

备注/Memo:
收稿日期:2020-04-10;改回日期:2020-05-19。
基金项目:国家自然科学基金项目(41702369);中央高校基本科研业务费专项资金项目(2018BLCB03)
作者简介:王丽娟(1995-),女,硕士研究生,主要从事山地灾害预警方面的研究.E-mail:2394620037@qq.com
通讯作者:马超(1986-),男,副教授,博士,主要从事山地灾害预测预报方面的研究.E-mail:sanguoxumei@163.com
更新日期/Last Update: 1900-01-01