[1]严华,郭晓军,葛永刚,等.泥石流沟岸堆积体侧蚀破坏的随机性[J].自然灾害学报,2020,29(06):085-97.[doi:10.13577/j.jnd.2020.0609]
 YAN Hua,GUO Xiaojun,GE Yonggang,et al.The randomness of lateral erosion failure of debris flow gully deposits[J].,2020,29(06):085-97.[doi:10.13577/j.jnd.2020.0609]
点击复制

泥石流沟岸堆积体侧蚀破坏的随机性
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
085-97
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
The randomness of lateral erosion failure of debris flow gully deposits
作者:
严华12 郭晓军13 葛永刚13 詹美强12 杜宇琛12
1. 中国科学院 水利部成都山地灾害与环境研究所, 四川 成都 610041;
2. 中国科学院大学, 北京 100049;
3. 青藏高原地球科学卓越创新中心, 北京 100101
Author(s):
YAN Hua12 GUO Xiaojun13 GE Yonggang13 ZHAN Meiqiang12 DU Yuchen12
1. Institute of Mountain Hazards and Environment, CAS, Chengdu 610041, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
关键词:
泥石流崩滑堆积体土体失稳侧蚀随机性
Keywords:
debris flowavalanche depositsoil failurelateral erosionrandomness
分类号:
X43;P642.23;X9
DOI:
10.13577/j.jnd.2020.0609
摘要:
山区小流域沟岸的崩滑堆积体是泥石流形成和补给的重要物质来源,且在震后,随着时间的推移,这种补给作用越来越重要。为了研究沟岸堆积体在径流作用下的侧蚀破坏过程和规律,利用室内水槽,开展了不同上游来流流量、底床坡度以及细颗粒含量的侧蚀破坏过程研究,重点对实验中堆积体侧蚀破坏的现象、过程和其中的随机性特征和规律进行分析总结。结果表明,在不同实验中,沟岸堆积体侧蚀破坏过程主要包括坡脚侵蚀阶段和失稳崩滑阶段,坡脚侵蚀阶段连续而稳定,动力条件主要为水力侵蚀;失稳崩滑阶段的主要动力为重力侵蚀,土体失稳活动在该阶段表现为间歇性和涨落性;土体失稳间歇时间和规模都可以视作随机序列,且失稳间歇时间服从Poisson分布,失稳规模服从Pareto分布。不同实验条件对土体失稳活动的影响主要体现在失稳间歇时间间隔即失稳频率的改变,土体失稳频率随着底床坡度和流量的增大而增大;在小坡度(3°)条件下,土体失稳频率随着细颗粒含量的增大而增大;随着底床坡度的增大(7°),失稳频率随着细颗粒含量的增多先增大后减小;在底床坡度较大时(11°),失稳频率随着细颗粒含量的增多而减小。研究结果可为泥石流的形成机理研究提供参考。
Abstract:
The collapsed and landslide deposits on the bank of the gully in mountain areas are significant material sources for the formation and supply of debris flow. After the earthquake, this replenishment role has been increasingly crucial over time. For studying the lateral erosion failure process and law of these accumulations under the action of flow in debris flow gully, the lateral erosion failure process of the deposits with different bed slope, upstream flow, and fine particle content was studied by laboratory flume experiment. This paper mainly analyzes and summarizes the phenomenon and randomness law in the process of lateral erosion failure of side-shore deposits in the experiments. The results show that the erosion process of the deposits mainly includes the erosion stage of slope toe and the instability stage. The slope toe erosion stage is continuous and stable, and the main dynamic condition is hydraulic erosion; the prime driving force in the instability stage is gravity erosion, and the soil failure in this stage shows paroxysmal and fluctuation. The interval time and the scale of soil failure can be regarded as random sequences, and the interval time fit Poisson distribution, and its magnitude fit Pareto distribution. The influence of different experimental conditions on soil failure activities is mainly reflected in the instability frequency. The frequency of soil failure increases with the increase of the slope gradient and flow. Under the small bed slope gradient (3°), the frequency of soil failure increases with the increase of fine particle content. With the increase of bed slope gradient (7°), the frequency of soil failure increases first and then decreases with the increase of fine particle content. When the bed surface is in a steeper slope condition (11°), the frequency of soil failure decreases with the increase of fine particle content. The research results can provide a reference for the analysis of the formation mechanism of debris flow.

参考文献/References:

[1] 杜榕桓, 李鸿琏, 唐邦兴, 等. 三十年来的中国泥石流研究[J].自然灾害学报, 1995, 4(1):64-73. DU Ronghuan, LI Honglian, TANG Bangxing, et al. Debris flow research in China in the past 30 years[J]. Journal of Natural Disasters, 1995, 4(1):64-73.(in Chinese)
[2] 沈寿长, 谢修齐, 项行浦, 等.暴雨泥石流流量计算方法研究[J].中国铁道科学, 1993, 14(2):80-89. SHEN Shouchang, XIE Xiuqi, XIANG Xingpu, et al. On estimation of debris flow discharges[J].China railway science, 1993, 14(2):80-89.(in Chinese)
[3] 费祥俊, 舒安平.泥石流运动机理与灾害防治[M].北京:清华大学出版社, 2004. FEI Xiangjun, SHU Anping.Debris Flow Movement Mechanism and Disaster Prevention[M]. Beijing:Tsinghua University Press, 2004.(in Chinese)
[4] 杨成林, 陈宁生, 李战鲁.汶川地震次生泥石流形成模式与机理[J].自然灾害学报, 2011, 20(3):31-37. YANG Chenglin, CHEN Ningsheng, LI Zhanlu. Formation mode and mechanism for debris flow induced by Wenchuan earthquake[J]. Journal of Natural Disasters, 2011, 20(3):31-37. (in Chinese)
[5] 崔云, 孔纪名, 吴文平.汶川地震次生山地灾害链成灾特点与防治对策[J].自然灾害学报, 2012, 21(1):109-116. CUI Yun, KONG Jiming, WU Wenping. Cause characteristics and prevention control strategies of the secondary mountain disaster chain of the Wenchuan earthquake[J]. Journal of Natural Disasters, 2012, 21(1):109-116. (in Chinese)
[6] Fan X M, Gianvito Scaringi, Oliver Korup, et al.Earthquake induced chains of geologic hazards:patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 2019, 57(2):421-503.
[7] 蒋先刚, 崔鹏, 王兆印, 等.堰塞坝溃口下切过程试验研究[J].四川大学学报, 工程科学版, 2016,48(4):38-44. JIANG Xiangang, CUI Peng, WANG Zhaoyin, et al. Experiments investigation on longitudinal breaching of natural dam[J]. Journal of Sichuan University, 2016,48(4):38-44.(in Chinese)
[8] Cui P, Zhou G D, Zhu X H, et al. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology, 2013, 182:173-189.
[9] 朱兴华.泥石流沟道的沿程侵蚀特征及演进过程研究[D].北京:中国科学院大学, 2016. ZHU Xinghua. Study on Erosion Characteristics and Routing of Debris Flow Along the Channel[D]. Beijing:University of Chinese Academy of sciences, 2016. (in Chinese)
[10] Zhou G D, Cui P, Zhu X H, et al. A preliminary study of the failure mechanisms of cascading landslide dams[J]. International Journal of Sediment Research, 2015, 30(3):223-234.
[11] Zhou G D, Cui P, Chen H Y, et al. Experimental study on cascading landslide dam failures by upstream flows[J]. Landslides, 2013, 10(5):633-643.
[12] Osman A M, Thorne C R.Riverbank stability analysis I:Theory[J].Journalof Hydraulic Engineering, 1988, 114(2):134-150.
[13] Thorne C R, Osman A M. Riverbank stability analysis Ⅱ:Application[J].Journalof Hydraulic Engineering, 1988, 114(2):151-172.
[14] 蒋泽锋, 朱大勇, 沈银斌, 等. 水流冲刷过程中的边坡临界滑动场及河岸崩塌问题研究[J].岩土力学, 2015, 36(S2):21-28. JIANG Zefeng, ZHU Dayong, SHEN Yinbin, et al. Numerical simulation method of bank collapse based on theory of critical slip field[J]. Rock and Soil Mechanics, 2015, 36(S2):21-28. (in Chinese)
[15] 李志威, 郭楠, 胡旭跃, 等.基于BSTEM模型的黄河源草甸型弯曲河流崩岸过程模拟[J]. 应用基础与工程科学学报, 2019, 27(3):509-519. LI Zhiwei, GUO Nan, HU Xuyue, et al.Modeling of bank failure processes of meadow-type meandering river using BSTEM in the Yellow river source[J]. Journal of Basic Science and Engineering, 2019, 27(3):509-519. (in Chinese)
[16] 夏军强, 王光谦, 吴保生.游荡型河流演变及其数值模拟[M]. 北京:中国水利水电出版社, 2005. XIA Junqiang, WANG Guangqian, WU Baosheng. Evolution and Numerical Simulation of Wandering River[M].Beijing:China Water and Power Press, 2005. (in Chinese)
[17] 朱大勇, 钱七虎.严格极限平衡条分法框架下的边坡临界滑动场[J].土木工程学报, 2000, 33(5):68-74. ZHU Dayong, QIAN Qihu. Critical slip fields of slopes satisfied all condition of limit equilibrium for slices[J]. Journal of Civil Engineering, 2000, 33(5):68-74. (in Chinese)
[18] 张幸农, 应强, 陈长英, 等.江河崩岸的概化模拟试验研究[J].水利学报, 2009, 40(3):263-267. ZHANG Xingnong, YING Qiang, CHEN Changying, et al. Generalized model study on mechanism of riverbank failure[J].Journal of Hydraulic Engineering, 2009, 40(3):263-267. (in Chinese)
[19] 崔鹏. 泥石流起动条件及机理的实验研究[J]. 科学通报, 1991, 36(21):1650-1652. CUI Peng. Experimental study on starting conditions and mechanism of debris flow[J]. Chinese Science Bulletin, 1991, 36(21):1650-1652. (in Chinese)
[20] 王瑄, 李占斌, 郑良勇. 土壤剥蚀率与水流剪切力关系室内模拟试验[J].沈阳农业大学学报, 2007, 38(4):577-580. WANG Xuan, LI Zhanbin, ZHENG Liangyong. An indoor simulation experiment of the relationship between soil detachment rate and shear stress[J]. Journal of Shenyang Agricultural University, 2007, 38(4):577-580.(in Chinese)
[21] 蒋芳市, 陈培济, 黄炎和, 等. 集中水流下土石混合崩积体坡面侵蚀水动力特征试验研究[J].水土保持学报, 2017, 31(6):8-14,99. JIANG Fangshi, CHEN Peiji, HUANG Yanhe, et al. Experimental study on erosion hydrodynamic characteristics of concentrated flow on soil-rock mixed colluvial deposit slopes[J]. Journal of Soil and Water Conservation, 2017, 31(6):8-14,99. (in Chinese)
[22] 南新艳.广义Pareto分布[D].上海:华东师范大学, 2005. NAN Xinyan. Generalized Pareto Distribution[D]. Shanghai:East China Normal University, 2005.(in Chinese)

相似文献/References:

[1]聂娟,范一大,邓磊,等.山洪灾害雷达遥感灾情评估技术研究与应用[J].自然灾害学报,2010,19(03):105.
 NIE Juan,FAN Yi-da,DENG Lei,et al.Research and application of torrential flood loss assessment based on radar remote sensing technology[J].,2010,19(06):105.
[2]刘希林,陈宜娟.泥石流点密度和面密度对区域泥石流危险度的影响——对比研究[J].自然灾害学报,2011,20(02):036.
 LIU Xi-lin,CHEN Yi-juan.Influence of debris flow spot and area densities on regional hazardousness of debris flow:a comparative study[J].,2011,20(06):036.
[3]杨成林,陈宁生,李战鲁.汶川地震次生泥石流形成模式与机理[J].自然灾害学报,2011,20(03):031.
 YANG Cheng-lin,CHEN Ning-sheng,LI Zhan-lu.Formation mode and mechanism fordebris flow induced by Wenchuan earthquake[J].,2011,20(06):031.
[4]杨月巧,胡俊锋,郗蒙浩.基于灰色关联法的舟曲泥石流灾害影响因素分析[J].自然灾害学报,2011,20(03):139.
 YANG Yue-qiao,HU Jun-feng,XI Meng-hao.Analysis of influence factors of debris flow disaster in Zhouqu based on grey relevance method[J].,2011,20(06):139.
[5]李倩,黄勇.新疆天山公路泥石流风险评价研究[J].自然灾害学报,2011,20(04):154.
 LI Qian,HUANG Yong.Risk evaluation of debris flow for Tianshan Highway in Xinjiang[J].,2011,20(06):154.
[6]梁专明.新化县水车镇泥石流灾害研究[J].自然灾害学报,2011,20(05):032.
 LIANG Zhuan-ming.Study on debris flow disaster in Shuiche Town, Xinhua County[J].,2011,20(06):032.
[7]李朝安,胡卸文,王良玮.山区铁路沿线泥石流泥位自动监测预警系统[J].自然灾害学报,2011,20(05):074.
 LI Chao-an,HU Xie-wen,WANG Liang-wei.Automatic monitoring and early warning system of mud-position of debris flow along railway line in mountainous area[J].,2011,20(06):074.
[8]陈春光,姚令侃,杨庆华,等.基于堰流理论的泥石流堵河模型研究[J].自然灾害学报,2012,21(06):131.
 CHEN Chunguang,YAO Lingkan,YANG Qinghua,et al.Study of river-blocking due to debris flow based on weir flow theory[J].,2012,21(06):131.
[9]耿慧辉,贾景超.都江堰龙池镇三神公泥石流灾害特征[J].自然灾害学报,2012,21(06):136.
 GENG Huihui,JIA Jingchao.Features of Sanshengong debris flow hazard in Longchi Town of Dujiangyan City[J].,2012,21(06):136.
[10]冯杭建,唐小明,周爱国.浙江省泥石流与降雨历时关系研究及应用检验[J].自然灾害学报,2013,22(01):159.
 FENG Hangjian,TANG Xiaoming,ZHOU Aiguo.Study on relationship between rainfall duration and occurrence of debris flow in Zhejiang Province and its application examination[J].,2013,22(06):159.

备注/Memo

备注/Memo:
收稿日期:2019-12-23;改回日期:2020-06-29。
基金项目:中国科学院战略性先导科技专项(XDA23090203);国家自然科学基金项目(41977257,41471010)
作者简介:严华(1995-),男,硕士研究生,主要从事山地灾害形成机理方面的研究.E-mail:yanhua17@mails.ucas.ac.cn
通讯作者:葛永刚(1974-),男,研究员,博士,主要从事山地灾害形成机理及预警技术研究.E-mail:gyg@imde.ac.cn
更新日期/Last Update: 1900-01-01