[1]陈立国,吴昊天,陈晓斌,等.考虑蠕变和孔隙水压力消散的软土主固结时间的试验研究[J].自然灾害学报,2020,29(06):041-51.[doi:10.13577/j.jnd.2020.0605]
 CHEN Liguo,WU Haotian,CHEN Xiaobin,et al.Experimental study on primary consolidation time of soft soil considering creep and dissipation of pore water pressure[J].,2020,29(06):041-51.[doi:10.13577/j.jnd.2020.0605]
点击复制

考虑蠕变和孔隙水压力消散的软土主固结时间的试验研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
041-51
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
Experimental study on primary consolidation time of soft soil considering creep and dissipation of pore water pressure
作者:
陈立国12 吴昊天3 陈晓斌1 贺建清3
1. 中南大学 土木建筑学院, 湖南 长沙 410075;
2. 湖南省水利水电勘测设计研究总院, 湖南 长沙 410007;
3. 湖南科技大学岩土工程稳定控制与健康监测省重点实验室, 湖南 湘潭 411201
Author(s):
CHEN Liguo12 WU Haotian3 CHEN Xiaobin1 HE Jianqing3
1. School of Civil Engineering and Architecture, Central South University, Changsha 410075, China;
2. Hunan Hydro&Power Design Institute, Changsha 410007, China;
3. Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan Universityof Science and Technology, Xiangtan 411201, China
关键词:
主次固结孔隙水压力消散法拐点法Taylor法Casagrande法
Keywords:
primary and secondary consolidationpore water pressure dissipation methodinflection point methodTaylor methodCasagrande method
分类号:
TU411;X9
DOI:
10.13577/j.jnd.2020.0605
摘要:
利用GDS高级固结系统,对矿物组成主要为白云母和绿泥石的原状和重塑试样进行标准固结试验和固结蠕变试验。试验过程中,观测了逐级增加载荷下的变形和试样底部的孔隙水压力。发现由孔隙压力消散法和拐点法确定的主固结时间随应力水平增加的变化规律与采用Taylor法和Casagrande法所确定的变化规律相反。采用Taylor法和Casagrande法确定的主固结时间远小于采用孔隙压力消散法所确定的主固结时间。在采用Taylor法和Casagrande法所确定的主固结时间,孔隙水压力通常未完全消除。对于标准固结试验,通过拐点法、Casagrande法、Taylor法得到的原状土样的主固结时间接近,但通过拐点法得到的重塑土样的主固结时间大于通过Casagrande法和Taylor法得到的主固结时间,且大于采用拐点法所确定的原状土的主固结时间;通过拐点法确定的主固结时间明显小于采用孔隙压力消散法所确定的主固结时间;在采用拐点法所确定的主固结时间,孔隙水压力表现为未完全消除。对于固结蠕变试验,采用同一方法确定的原状土与重塑土的主固结时间基本一致,通过拐点法与孔隙压力消散法确定的主固结时间相当接近,应力水平不是特别高的条件下,在拐点法确定的主固结时间,孔隙水压力可视为基本消除,其固结行为大致与Terzaghi有效应力原理吻合。标准固结试验过程中,每级荷载增量下的残余孔隙水压力很小,可以忽略不计。而在固结蠕变试验过程中,随着竖向固结压力的增加,残余孔隙水压力明显增加,残余孔隙水压力与固结压力增量的比值相应减小。
Abstract:
Standard consolidation tests and consolidation creep tests were carried out on undisturbed specimens and reconstructed specimens composed mainly of Muscovite and Clinochlore by GDS advanced consolidation system. During the test, the deformation under gradually increasing load and pore water pressure at the bottom of the sample were observed. It is found that the change rule of the primary consolidation time determined by the pore pressure dissipation method and the inflection point method with the increase of the stress levels is opposite to that determined by Taylor method and Casagrande method. And the primary consolidation time determined by Taylor method and Casagrande method is far less than that determined by pore pressure dissipation method. The pore water pressure is usually not completely eliminated at the primary consolidation time determined by the Taylor and Casagrande methods. For standard consolidation test, the primary consolidation time of the undisturbed soil samples obtained by the inflection point method, Casagrande method and Taylor method is close. But the primary consolidation time of the remolded soil samples obtained by the inflection point method is greater than that obtained by the Casagrande method and Taylor method, and is also greater than that of the undisturbed soil determined by inflection point method. Furthermore, the primary consolidation time determined by inflection point method is obviously less than that determined by pore pressure dissipation method. In addition, the pore water pressure is not completely eliminated at the primary consolidation time determined by inflection point method. For consolidation creep test, the primary consolidation time of undisturbed soil and remolded soil determined by the same method is basically same, and the primary consolidation time determined by inflection point method and pore pressure dissipation method is quite close. Besides, the pore water pressure can be regarded as basically eliminated at the primary consolidation time determined by the inflection point method when the stress level is not particularly high, the consolidation behavior is roughly in accordance with the Terzaghi effective stress principle. During the standard consolidation test, the residual pore water pressure under each load increment is very small even can be ignored. Nevertheless, in consolidation creep test, with the increase of vertical consolidation pressure, the residual pore water pressure increases obviously, and the ratio of residual pore water pressure and consolidation pressure increment decreases correspondingly.

参考文献/References:

[1] 黄文熙.土的工程性质[M].北京:水利电力出版社, 1983. HUANG Wenxi.Engineering Properties of Soil[M].Beijing:Water Power Press, 1983.(in Chinese)
[2] 程培峰, 姜海洋, 刘红军.寒区湿地软土固结变形特性试验研究[J].自然灾害学报, 2007, 16(2):82-85. CHENG Peifeng, JIANG Haiyang, LIU Hongjun.Test study on consolidation behaviors of wet land soft soil in cold area[J].Journal of Natural Disasters, 2007, 16(2):82-85.(in Chinese)
[3] 雷华阳, 肖树芳.天津软土的次固结变形特性研究[J].工程地质学报, 2002, 10(4):385-389. LEI Huayang, XIAO Shufang.Study on secondary-consolidation deformation characteristics of soft soil in Tianjin[J].Journal of Engineering Geology, 2002, 10(4):385-389.(in Chinese)
[4] 杨爱武, 张静, 肖敏.基于不同结构强度软黏土长期强度特性研究[J].自然灾害学报, 2019, 28(2):109-117. YANG Aiwu, ZHANG Jing, XIAO Min.Study on the long-term strength characteristics of soft clay with different structural strength[J].Journal of Natural Disasters, 2019, 28(2):109-117.(in Chinese)
[5] 雷华阳, 王学超, 丁小东, 等.软土的主次固结划分及影响因素探讨[J].工程地质学报, 2014, 22(3):489-497. LEI Huayang, WANG Xuechao, DING Xiaodong, et al.Exploration on division of primary-secondary consolidation and influential factors with soft soil[J].Journal of Engineering Geology, 2014, 22(3):489-497.(in Chinese)
[6] 余湘娟, 殷宗泽, 董卫军.荷载对软土次固结影响的试验研究[J].岩土工程学报, 2007, 29(6):913-916. YU Xiangjuan, YIN Zongze, DONG Weijun.Influence of load onsecondary consolidation deformation of soft soils[J].Chinese Journal of Geotechnical Engineering, 2007, 29(6):913-916.(in Chinese)
[7] Bjerrum. 7th Rankine Lecture:Engineering geology of Norwegian normally-consolidated marin clays as related to settlement of buildings[J].Geotechnique, 1967, 17(2):81-118.
[8] Tayor D W, Merchant W.A theory of day consolidation accounting for secondary compressions[J].Journal of Mathematics and Physics, 1940, 19(23):167.
[9] Casagrande A, Fadum R E. Notes on Soil Testing for Engineering Purposes[M]. Cambridge:Harvard University Graduate School Engineering Publication, 1940.
[10] 钱家欢.黏弹性理论在土力学方面的应用[J].高等学校自然科学学报, 1966, 2(1):73-80. QIAN Jiahuan.The application of viscoelastic theory in soil mechanics[J]. High School Natural Science Journal, 1966, 2(1):73-80.(in Chinese)
[11] 王盛源.饱和多孔介质粘弹性理论[J].中国科学(A辑), 1989, (7):739-748. WANG Shengyuan. Theory of porous viscoelastic theory of porousmedia[J].Science in China(Series A), 1989, (7):739-748.(in Chinese)
[12] 于新豹, 刘松玉, 缪林昌.连云港软土蠕变特性及其工程应用[J].岩土力学, 2003, 24(6):1001-1006. YU Xinbao, LIU Songyu, MIU Linchang.Creep properties of Liangyungang soft clay and its engineering application[J].Rock and Soil Mechanics, 2003, 24(6):1001-1006.(in Chinese)
[13] Zeng L L, Hong Z S. Experimental study of primary consolidation time for structured and destructured clays[J]. Applied Clay Science, 2015, 116:141-149.
[14] 梁树能, 甘甫平, 闫柏琨, 等.绿泥石矿物成分与光谱特征关系研究[J].光谱学与光谱分析, 2014, 34(7):1763-1768. LIANG Shuneng, GAN Fuping, YAN Baikun, et al.Study on the relationship between mineral composition and spectral characteristics of chlorite[J].Spectroscopy and Spectral Analysis, 2014, 34(7):1763-1768.(in Chinese)
[15] 方俊杰.竹溪隧道泥质板岩围岩矿物成分试验研究及微观结构观察[J].中国水运, 2016(7):55-58. FANG Junjie. Experimental study and microstructure observation of mineral composition of argillaceous slate in Zhuxi tunnel[J].China Water Transport, 2016(7):55-58.(in Chinese)
[16] Robinson R G. Consolidation analysis with pore water pressure measurements[J]. Geotechnique, 1999, 49(1):127-132.

备注/Memo

备注/Memo:
收稿日期:2020-08-08;改回日期:2020-09-15。
基金项目:国家自然科学基金项目(51978674); 湖南省教育厅资助项目(18A189)
作者简介:陈立国(1977-),男,教授级高级工程师,博士,主要从事公路、市政工程建设管理工作.E-mail:57382091@qq.com
更新日期/Last Update: 1900-01-01