[1]高延红,汪蒙,周晓芸,等.粉煤灰掺量对混凝土氯离子扩散性能稳定时间的影响及机理[J].自然灾害学报,2020,29(06):030-40.[doi:10.13577/j.jnd.2020.0604]
 GAO Yanhong,WANG Meng,ZHOU Xiaoyun,et al.Effect of fly ash content on the stable time of chloride ion diffusion property of concrete and its mechanism[J].,2020,29(06):030-40.[doi:10.13577/j.jnd.2020.0604]
点击复制

粉煤灰掺量对混凝土氯离子扩散性能稳定时间的影响及机理
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
030-40
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
Effect of fly ash content on the stable time of chloride ion diffusion property of concrete and its mechanism
作者:
高延红1 汪蒙1 周晓芸1 章玉容12 张俊芝12
1. 浙江工业大学 建筑工程学院, 浙江 杭州 310014;
2. 浙江省工程结构与防灾减灾技术研究重点实验室, 浙江 杭州 310014
Author(s):
GAO Yanhong1 WANG Meng1 ZHOU Xiaoyun1 ZHANG Yurong12 ZHANG Junzhi12
1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China;
2. Key Laboratory of Civil Engineering Structure&Disaster Prevention and Mitigation Technology of Zhejiang Province, Hangzhou 310014, China
关键词:
粉煤灰混凝土潮差环境氯离子扩散系数稳定时间微观结构参数
Keywords:
fly ash concretetidal environmentchloride diffusion coefficientstable timemicrostructural parameter
分类号:
TU528;X9
DOI:
10.13577/j.jnd.2020.0604
摘要:
基于自然潮差环境下840 d的暴露试验,测试了粉煤灰掺量分别为水泥质量的0%、20%、30%、40%和50%混凝土中自由氯离子浓度,计算了氯离子表观扩散系数及即时扩散系数;提出了混凝土氯离子扩散性能稳定时间的分析方法,并分析了粉煤灰掺量对试验混凝土氯离子扩散性能稳定时间的影响;同时,通过核磁共振技术(NMR)测得不同暴露时间后混凝土的弛豫时间和孔隙率等混凝土微观结构参数,分析了掺量对粉煤灰混凝土氯离子即时扩散系数及微观结构参数时变性的影响,探讨了混凝土氯离子扩散性能稳定时间与其微观结构参数时变性之间的关系。结果表明,混凝土氯离子扩散系数均其随暴露时间的延长和粉煤灰掺量的增大而减小;不同粉煤灰掺量的混凝土氯离子即时扩散系数达到稳定时间不一致,且其氯离子即时扩散系数的稳定时间随粉煤灰掺量的增加而缩短;混凝土的孔隙率均随暴露时间的延长而减少,表现出与其氯离子即时扩散系数一致的明显时变性;混凝土孔隙的弛豫时间及孔隙率等微观结构参数的时变性,总体上反映了粉煤灰掺量对混凝土氯离子扩散性能时变性及其稳定时间的影响。
Abstract:
Based on 840 d exposure test in the natural tidal environment, the stable time of fly ash concrete was studied. First, the free chloride concentrations of concrete with 0 %, 20 %, 30 %, 40 % and 50 % fly ash at six exposed times were obtained. Second, the apparent and instantaneous chloride diffusion coefficients of concrete were calculated. Furthermore, the calculated method of stable time of chloride diffusion coefficient in concrete was proposed and the influence of fly ash content on the stable time was analyzed. Finally, the influence of fly ash on the time dependency of instantaneous chloride diffusion coefficient and the microstructure parameters is obtained based on the relaxation time and porosity of fly ash concrete under different exposure time is obtained by nuclear magnetic resonance (NMR) technology test. Results show that both apparent and instantaneous chloride diffusion coefficients decrease with the increase of exposure time and fly ash content. In addition, the stable time of instantaneous chloride diffusion coefficient of concrete with different fly ash content is inconsistent, and the stable time of instantaneous chloride diffusion coefficient is shorter with the increase of fly ash content. The total porosity of concrete decreases with the extension of exposure time, which shows an obvious time dependency consistent with the instantaneous chloride diffusion coefficient. In addition, the time dependency of the microstructure parameters such as the relaxation time and the total porosity of concrete generally reflects the influence of fly ash content on the time dependency and stable time of concrete chloride diffusion properties.

参考文献/References:

[1] Mangat P S, Molloy B T. Prediction of long term chloride concentration in concrete[J]. Materials and Structures, 1994, 27(6):338-346.
[2] 张俊芝, 李登辉, 陈伟, 等. 潮差环境下混凝土氯离子扩散时变性与孔隙分形特征的关系[J]. 自然灾害学报, 2016, 25(6):51-57. ZHANG Junzhi, LI Denghui, CHEN Wei, et al. Relationship between time-variability of chlorion diffusion in concrete and pore fractal characteristic under tidal range environment[J]. Journal of Natural Disasters, 2016, 25(6):51-57.(in Chinese)
[3] Xia J, Li T, Fang J X, et al. Numerical simulation of steel corrosion in chloride contaminated concrete[J].Construction and Building Materials, 2019, 228:116745.
[4] Wang Y, Wu L, Wang Y, et al. Prediction model of long-term chloride diffusion into plain concrete considering the effect of the heterogeneity of materials exposed to marine tidal zone[J]. Construction and Building Materials, 2018, 159:297-315.
[5] Thomas M D A, Bamforth P B. Modelling chloride diffusion in concrete:effect of fly ash and slag[J]. Cement and Concrete Research, 1999, 29(4):487-495.
[6] Ortega J M, Tremi? R M, Sánchez I, et al. Effects of environment in the microstructure and properties of sustainable mortars with fly ash and slag after a 5-year exposure period[J]. Sustainability, 2018, 10(3):1-20.
[7] Zhang P, Liu Z, Wang Y, et al. 3D neutron tomography of steel reinforcement corrosion in cement-based composites[J]. Construction and Building Materials, 2018, 162:561-565.
[8] Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete-A review[J]. Cement & Concrete Research, 2009, 39(12):1122-1138.
[9] Shafikhani M, Chidiac S E. Quantification of concrete chloride diffusion coefficient-A critical review[J]. Cement and Concrete Composites, 2019, 99:225-250.
[10] Zhang J, Zhao J, Zhang Y, et al. Instantaneous chloride diffusion coefficient and its time dependency of concrete exposed to a marine tidal environment[J]. Construction and Building Materials, 2018, 167:225-234.
[11] Chauhan A, Sharma U K. Influence of temperature and relative humidity variations on non-uniform corrosion of reinforced concrete[C]//Structures, 2019, 19:296-308.
[12] Lu C, Gao Y, Cui Z, et al. Experimental analysis of chloride penetration into concrete subjected to drying-wetting cycles[J]. Journal of Materials in Civil Engineering, 2015, 27(12):1-10.
[13] 高延红, 周晓芸, 吕萌, 等. 自然潮差下粉煤灰混凝土氯离子扩散性能时变性[J]. 水力发电学报, 2019, 38(10):14-23. GAO Yanhong, ZHOU Xiaoyun, Lü Meng, et al. Time-dependent chloride diffusivity of fly ash concrete under a marine tidal environment[J]. Journal of Natural Disasters, 2019, 38(10):14-23.(in Chinese)
[14] Philip V H, Michel D K, Alice E, et al. Service life and global warming potential of chloride exposed concrete with high volumes of fly ash[J]. Cement and Concrete Composites, 2017, 80:210-223.
[15] 谢友均,马昆林,龙广成,等. 矿物掺合料对混凝土中氯离子渗透性的影响[J].硅酸盐学报,2006,34(11):1345-1350. XIE Youjun, MA Kunlin, LONG Guangcheng, et al. Influence of mineral admixture on chloride ion permeability of concrete[J]. Journal of the Chinese Ceramic Society, 2006, 34(11):1345-1350.(in Chinese)
[16] Liu J, Ou G, Qiu Q, et al. Chloride transport and microstructure of concrete with/without fly ash under chloride condition[J]. Construction and Building Materials, 2017, 146:493-501.
[17] Chalee W, Jaturapitakkul C. Effects of w/b ratios and fly ash finenesses on chloride diffusion coefficient of concrete in marine environment[J]. Materials and Structures, 2009, 42(4):505-514.
[18] Petcherdchoo A. Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete[J]. Construction and Building Materials, 2013, 38(1):497-507.
[19] Zhang Z, Zhang B, Yan P, Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures[J]. Construction and Building Materials, 2016, 121:483-490.
[20] Zhang J, Guo J, Li D, et al. The influence of admixture on chloride time-varying diffusivity and microstructure of concrete by low-field NMR[J]. Ocean Engineering, 2017, 142:94-101.
[21] Yu Z, Ma J, Ye G, et al. Effect of fly ash on the pore structure of cement paste under a curing period of 3 years[J]. Construction and Building Materials, 2017, 144:493-501.
[22] Climent M A, de Vera G, López J F, et al. A test method for measuring chloride diffusion coefficients through nonsaturated concrete:Part I. The instantaneous plane source diffusion case[J]. Cement and Concrete Research, 2002, 32(7):1113-1123.
[23] 国家气候中心.浙江省嘉兴平湖气象资料[DB/OL].http://www.weatherr40d/101210305.shtml,2019-1-11. National Climate Center. Meteorological data of Pinghu in Jiaxing, Zhejiang Province[DB/OL]. http://www.weatherr40d/101210305.shtml, 2019-1-11. (in Chinese)
[24] 张俊芝, 方润华, 吕萌, 等. 自然潮差环境下粉煤灰混凝土微观结构的时变过程[J]. 自然灾害学报, 2019, 28(5):9-16. ZHANG Junzhi, FANG Runhua, Lü Meng, et al. Time dependent microstructure evolution of fly ash concrete in the natural tidal environment[J]. Journal of Natural Disasters, 2019, 28(5):9-16.(in Chinese)
[25] Pang L, Li Q. Service life prediction of RC structures in marine environment using long term chloride ingress data:Comparison between exposure trials and real structure surveys[J]. Construction and Building Materials, 2016, 113:979-987.
[26] Pilvar A, Ramezanianpour A A, Rajaie H. New method development for evaluation concrete chloride ion permeability[J]. Construction and Building Materials, 2015, 93:790-797.
[27] Stanish K, Thomas, M. The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients[J].Cement and Concrete Research, 2003, 33(1):55-62.

相似文献/References:

[1]张俊芝,李登辉,陈伟,等.潮差环境下混凝土氯离子扩散时变性与孔隙分形特征的关系[J].自然灾害学报,2016,25(06):051.[doi:10.13577/j.jnd.2016.0607]
 ZHANG Junzhi,LI Denghui,CHEN Wei,et al.Relationship between time-variability of chlorion diffusion in concrete and pore fractal characteristic under tidal range environment[J].,2016,25(06):051.[doi:10.13577/j.jnd.2016.0607]
[2]张俊芝,方润华,吕萌,等.自然潮差环境下粉煤灰混凝土微观结构的时变过程[J].自然灾害学报,2019,28(05):009.[doi:10.13577/j.jnd.2019.0502]
 ZHANG Junzhi,FANG Runhua,LV Meng,et al.Time dependent microstructure evolution of fly ash concrete in the natural tidal environment[J].,2019,28(06):009.[doi:10.13577/j.jnd.2019.0502]

备注/Memo

备注/Memo:
收稿日期:2020-04-16;改回日期:2020-06-12。
基金项目:国家自然科学基金项目(52079124,51279181);浙江省自然科学基金项目(LY19E090006,LQ18G010007,LY17E090007)
作者简介:高延红(1968-),女,副教授,主要从事水利工程结构及工程安全研究.E-mail:yhgao@zjut.edu.cn
通讯作者:张俊芝(1964-),男,教授,博士生导师,主要从事混凝土结构及其耐久性研究.E-mail:jzzhang@zjut.edu.cn
更新日期/Last Update: 1900-01-01