[1]孙义强,孟上九,王淼,等.冻土三轴试验温度精准测控新方法[J].自然灾害学报,2020,29(06):021-29.[doi:10.13577/j.jnd.2021.0603]
 SUN Yiqiang,MENG Shangjiu,WANG Miao,et al.Accurate measurement and control of temperature in the triaxial test for frozen soil[J].,2020,29(06):021-29.[doi:10.13577/j.jnd.2021.0603]
点击复制

冻土三轴试验温度精准测控新方法
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
021-29
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
Accurate measurement and control of temperature in the triaxial test for frozen soil
作者:
孙义强1 孟上九123 王淼2 穆海龙2
1. 中国地震局工程力学研究所, 黑龙江 哈尔滨 150080;
2. 哈尔滨理工大学 建筑工程学院, 黑龙江 哈尔滨 150080;
3. 佳木斯大学 建筑工程学院, 黑龙江 佳木斯 154007
Author(s):
SUN Yiqiang1 MENG Shangjiu123 WANG Miao2 MU Hailong2
1. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China;
2. College of Civil Engineering and Architecture, Harbin University of Science and Technology, Harbin 150080, China;
3. College of Architecture and Civil Engineering, Jiamusi University, Jiamusi 154007, China
关键词:
冻土三轴试验温度精准测控
Keywords:
frozen soiltriaxial testtemperatureaccurate measurement and control
分类号:
TU415;TH873;X43;X9
DOI:
10.13577/j.jnd.2021.0603
摘要:
冻土力学理论与冻土区工程建设的开展依赖于大量的室内外试验,试样温度测控是否精准决定了试验成败及可靠性。现有冻土三轴试验以低温箱或压力室温度作为试样温度,对比试验表明,低温箱及压力室温度与试样本身温度相差较大,存在空间上的不均衡性及时间上的滞后性,并将直接导致试验结果失准。针对该问题,本文研制了一套三轴试验温度精准测控方法及设备。基于低功耗蓝牙传感技术,研制了小型无线温度传感器,并配套设计完成了手机端APP,可对试验过程中土试样内部温度进行实时监测;通过三轴仪底座及压力室内有线温度测试系统,实现土试样表面温度及环境温度的实时监测;通过在压力室内设置降温室,利用水浴降温实现了土试样的快速冻结和温度稳定控制。此套方法及设备实现了冻土三轴试验试样温度的空间无盲点、时间无滞后精准测控。
Abstract:
The theory of frozen soil mechanics and the engineering construction in frozen soil regions depend on extensive laboratory and in situ tests. The accuracy of specimen temperature measurement and control determines the success or failure and reliability of tests. Existing triaxial tests conducted on frozen soil use the temperature of the low-temperature apparatus or pressure chamber as the sample temperature. Comparative tests showed quite different temperatures, and there was inhomogeneity in space and lag in time for specimen temperature, which would directly lead to inaccurate results. A set of precise temperature measurement and control methods and devices for the triaxial test were developed in this study to solve this problem. A low power bluetooth-based small wireless temperature sensor was developed, and the matching mobile phone APP was designed, aiming to monitor the sample internal temperature during the test in real-time. The sample surface temperature and the ambient temperature were measured in real-time via the wired testing system implanted in the base of the sample and the pressure chamber. A cooling chamber was installed in the pressure chamber, and the rapid freezing and stable temperature control of soil samples were realized by water bath cooling. This set of methods and devices realize the accurate sample temperature measurement and control in the frozen soil triaxial test without a blind spot in space and delay in time.

参考文献/References:

[1] 徐斅祖, 王家澄, 张立新. 冻土物理学[M]. 第二版. 北京:科学出版社, 2010. XU Xiaozu, WANG Jiacheng, ZHANG Lixin. Physics of Frozen Soils[M]. Second edition. Beijing:Science Press, 2010.(in Chinese)
[2] 苗姜龙, 陈曦, 吕彦楠, 等. 基于BP神经网络的冻土路基变形预测与可靠度分析[J]. 自然灾害学报, 2018, 27(4):81-87. MIAO Jianglong, CHEN Xi, LV Yannan, et al. Prediction on deformation and reliability of subgrade of Qinghai-Tibet Railway based on BP neural network method[J]. Journal of Natural Disasters, 2018, 27(4):81-87.(in Chinese)
[3] 孙义强.粉质黏土负温抗剪强度试验研究[D].哈尔滨:哈尔滨理工大学, 2017. SUN Yiqiang.Experimental Research on Shear Strength under Negative Temperatures for Silty Clay[D]. Harbin:Harbin University of Science and Technology, 2017.(in Chinese)
[4] 胡坤, 封金财, 杨兆. 高温冻土抗拉强度试验研究[J]. 岩石力学与工程学报, 2017, 36(增2):4267-4275. HU Kun, FENG Jincai, YANG Zhao. Tests on tensile strength of high-temperature frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2):4267-4275.(in Chinese)
[5] 王淼, 孟上九, 王兴隆, 等. 循环荷载下冻土振陷增长规律试验研究[J]. 岩土工程学报, 2015, 38(5):916-922. WANG Miao, MENG Shangjiu, WANG Xinglong, et al. Experimental research on development of vibration excited subsidence of frozen soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 38(5):916-922.(in Chinese)
[6] 孙义强, 孟上九, 王兴隆, 等. 动荷载作用下冻土试验技术及冻土变形初步研究[J]. 地震工程与工程振动, 2016, 36(1):169-175. SUN Yiqiang, MENG Shangjiu, WANG Xinglong, et al. Preliminary study on testing techniques and deformation of frozen soil under dynamic loading[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(1):169-175.(in Chinese)
[7] Miao Wang, Shangjiu Meng, Xiaoming Yuan, et al. Experimental validation of vibration-excited subsidence model of seasonally frozen soil under cyclic loads[J]. Cold Regions Science and Technology, 2018, 146:175-181.
[8] 刘炳宇, 孟上九, 王淼. 季冻区路基冻胀影响因素分析及权重判别[J]. 自然灾害学报, 2018, 27(2):68-73. LIU Bingyu, MENG Shangjiu, WANG Miao. Analysis on the influential factors and their weights of frost-heaving for subgrades in seasonal frost regions[J]. Journal of Natural Disasters, 2018, 27(2):68-73.(in Chinese)
[9] 荣广秋, 王淼, 孟上九, 等. 季冻土典型土类冻胀特性试验研究[J]. 自然灾害学报, 2020, 29(2):44-53. RONG Guangqiu, WANG Miao, MENG Shangjiu, et al. Experimental study on frost heaving characteristics of typical soils in seasonal frozen area[J]. Journal of Natural Disasters, 2020, 29(2):44-53.(in Chinese)
[10] Shelman, A, Tantalla, J, Sritharan, S, et al. Characterization of seasonally frozen soils for seismic design of foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(7):04014031.
[11] Watanabe, K, Osada, Y. Simultaneous measurement of unfrozen water content and hydraulic conductivity of partially frozen soil near 0℃[J]. Cold regions Science and Technology, 2017, 142:79-84.
[12] Zhao Xiaodong, Zhou Guoqing, Lu Guilin, et al. Thermal gradient dependent deformation behavior of frozen soil and its mechanism at temperatures close to 0℃[J]. Cold Regions Science and Technology, 2017, 135:105-115.
[13] Simonsen E, Isacsson E. Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests[J]. Canidian Geotechnical Journal, 2001, 38(4):863-875.
[14] Wang Dayan, Wang Yongtao, Ma Wei, et al. Study on the freezing-induced soil moisture redistribution under the applied high pressure[J]. Cold Regions Science and Technology, 2018, 145:135-141.
[15] 张淑娟, 赖远明, 张明义, 等. 动荷载作用下冻土温度变化及强度损失探讨[J]. 冰川冻土, 2006, 28(1):131-135. ZHANG Shujuan, LAI Yuanming, ZHANG Mingyi, et al. Temperature change and strength descent of frozen soils under dynamic loading[J]. Journal of Glaciology and Geocryology, 2006, 28(1):131-135.(in Chinese)
[16] 杨高升, 姚晓亮, 周攀峰, 等. 冻土试验低温恒温箱温度均匀性试验研究[J]. 中国测试, 2017, 43(9):134-138. YANG Gaosheng, YAO Xiaoliang, ZHOU Panfeng, et al. Experimental study on temperature uniformity of low temperature incubator in frozen soil test[J]. China Measurement & Test, 2017, 43(9):134-138.(in Chinese)
[17] 程涛, 张东明, 孙福申, 等. 季冻区山岭公路隧道冻胀力学特征数值模拟研究[J]. 自然灾害学报, 2018, 27(4):34-40. CHENG Tao, ZHANG Dongming, SUN Fushen, et al. Numerical simulation of mechanical characteristics of mountain road tunnel under frost heaving in seasonal frozen region[J]. Journal of Natural Disasters, 2018, 27(4):34-40.(in Chinese)

相似文献/References:

[1]王晓亮,李光范,胡伟,等.浅析吊罗山滑坡诱发因素及影响机理[J].自然灾害学报,2014,23(01):144.[doi:10.13577/j.jnd.2014.0120]
 WANG Xiaoliang,LI Guangfan,HU Wei,et al.Preliminary analysis of inductive factors and the influence mechanism of Diaoluo Mountain landslide[J].,2014,23(06):144.[doi:10.13577/j.jnd.2014.0120]
[2]孟上九,张华瑞,王淼,等.吹填砂粉煤灰复合土力学特性试验[J].自然灾害学报,2019,28(01):132.[doi:10.13577/j.jnd.2019.0116]
 MENG Shangjiu,ZHANG Huarui,WANG Miao,et al.Experimental study of mechanical properties for hydraulic fill sand and fly ash composite soil[J].,2019,28(06):132.[doi:10.13577/j.jnd.2019.0116]

备注/Memo

备注/Memo:
收稿日期:2020-06-07;改回日期:2020-06-29。
基金项目:黑龙江省自然科学基金项目(ZD2019E009);国家自然科学基金项目(51378164);中国地震局工程力学研究所基本科研业务费专项项目(2019D16)
作者简介:孙义强(1991-),男,博士研究生,主要从事土工试验技术及冻土力学特性研究.E-mail:syq_iem@163.com
通讯作者:王淼(1990-),男,讲师,博士,主要从事土动力学及岩土工程研究.E-mail:jyllwm1990@126.com
更新日期/Last Update: 1900-01-01