参考文献/References:
[1] 李忠献, 任其武, 师燕超, 等.重要建筑结构抗恐怖爆炸设计爆炸荷载取值探讨[J].建筑结构学报, 2016, 37(3):51-58. LI Zhongxian, REN Qiwu, SHI Yanchao, et al. Research on blast load value in design of important building structures against terrorist explosions[J]. Journal of Building Structures, 2016, 37(3):51-58. (in Chinese)
[2] Remennikov A, Gan E C J, Tuan Ngo, et al. The development and ballistic performance of protective steel-concrete composite barriers against hypervelocity impacts by explosively formed projectiles[J]. Composite Structures, 2019, 207:625-644.
[3] Liew J Y R, Sohel K M A, Koh C G. Impact tests on steel-concrete-steel sandwich beams with lightweight concrete core[J]. Engineering Structures, 2009, 31(9):2045-2059.
[4] Narayanan R, Wright H D, Francis R W, et al. Double skin composite construction for submerged tube tunnels[J]. Steel Constr Today, 1987, 1:185-189.
[5] Yan J B, Liew J Y R, Zhang M H, et al. Experimental and analytical study on ultimate strength behaviour of steel-concrete-steel sandwich composite beam structures[J].Mater. Struct., 2015, 48(5):1523-1544.
[6] Montague P. A simple composite construction for cylindrical shells subjected to external pressure[J]. J. Mech. Engng Sci., 1975, 17:105-113.
[7] Malek N, Machida A, Mutsuyoshi H, et al. Steel-concrete sandwich members without shear reinforcement[J]. Transactions of Japan Concrete Institute, 1993, 15(2):1279-1284.
[8] Xie M, Foundoukos N, Chapman J C. Experimental and numerical investigation on the shear behaviour of friction-welded bar-plate connections embedded in concrete[J]. J. Construct. Steel Research, 2004, 61:625-649.
[9] Liew J Y, Wang T Y, Sohel K M A. Separation Prevention Shear Connectors for Sandwich Composite Structures[P]. US Provisional Patent Application, No. 61/047, 130, 2008.
[10] Leekitwattanam, Boyd S W, Shenoi R A. Evaluation of the transverse shear stiffness of a steel bi-directional corrugated-strip-core sandwich beam[J]. J. Construct. Steel Research, 2011, 67:248-254.
[11] Ehlers S, Ostby E. Increased crashworthiness due to arctic conditions-The influence of sub-zero temperature[J]. Mar Struct 2012, 28:86-100.
[12] Takeuchi M, Narikawa M, Matsuo I, et al. Study on a concrete filled structure for nuclear power plants[J]. Nuclear Engineering and Design, 1998, 179(2):209-223.
[13] Ozaki M, Akita S, Oosugah, et al. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear[J]. Nucl Eng Des, 2004, 228(1-3):225-244.
[14] Choi B J, Han H S. An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading[J]. Steel and Composite Structures, 2009, 9(6):519-534.
[15] Varma AH, Malushte S, Sener K, et al. Steel-plate composite (SC) walls for safety related nuclear facilities:design for in-plane force and out-of-plane moments[C]//Nucl Eng and Des, 2014, 269(Special Issue on SMiRT-21 Conference):240-249.
[16] Zhang K, Varma AH, Malushte SR, et al. Effect of shear connectors on local buckling and composite action in steel concrete composite walls[J]. Nuclear Engineering and Design, 2014, 269:231-239.
[17] Varma A H, Zhang K, Malushte S R. Local buckling of SC composite walls at ambient and elevated temperature[C]//Transactions, SMiRT-22, Sanfrancisco, California, USA, Aug 18-23, 2013.
[18] Varma A H, Malushte S R, Sener K C. Steel-plate composite (SC) walls for safety related nuclear facilities:design for in-plane force and out-of-plane moments[J]. Nuclear Engineering and Design, 2014, 269:240-249.
[19] 曹万林, 惠存, 董宏英, 等.工字形截面内藏双钢板混凝土组合柱抗震试验[J]. 自然灾害学报, 2014, 23(2):85-93. CAO Wanlin, HUI Cui, DONG Hongying, et al. Experimental study on seismic behavior of I-section steel reinforced concrete columns with concealed double steel plates[J].Journal of Natural Disasters, 2014, 23(2):85-93. (in Chinese)
[20] 李洋, 谭平, 魏瑶, 等.具有面外变形空间的屈曲约束钢板剪力墙抗震性能试验研究[J]. 自然灾害学报, 2018, 27(1):61-70. LI Yang, TAN Ping, WEI Yao, et al. Experimental investigation on seismic behavior of buckling-restrained steel plate shear wall with out-of-plane deformation space[J]. Journal of Natural Disasters, 2018, 27(1):61-70. (in Chinese)
[21] 李晓虎, 李小军, 申丽婷, 等. 核岛结构双钢板混凝土组合剪力墙低周往复试验研究[J]. 北京工业大学学报, 2016, 42(10):1498-1508. LI Xiaohu, LI Xiaojun, SHEN Liting, et al. Experimental study of composite shear walls with double steel plates and filled concrete for a nuclear island structure under low cyclic loading[J]. Journal of Beijing University of Technology, 2016, 42(10):1498-1508. (in Chinese)
[22] 熊峰, 何涛, 周宁.核电站双钢板混凝土剪力墙抗剪强度研究[J]。湖南大学学报(自然科学版), 2015, 42(9):33-41. XIONG Feng, HE Tao, ZHOU Ning. Study on the shear strength of double steel plate composite shear wall in nuclear plant[J]. Journal of Hunan University (Natural Sciences), 2015, 42(9):33-41. (in Chinese)
[23] 刘阳冰, 杨庆年, 刘晶波, 等. 双钢板-混凝土剪力墙轴心受压性能试验研究[J]. 四川大学学报(工程科学版), 2016, 48(2):83-90. LIU Yangbing, YANG Qingnian, LIU Jingbo, et al. Experimental research on axial compressive behavior of shear wall with double steel plates and filled concrete[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(2):83-90. (in Chinese)
[24] 程春兰, 周德源, 叶珊, 等. 低剪跨比带约束拉杆双钢板-混凝土组合剪力墙抗震性能试验研究[J].东南大学学报(自然科学版), 2016, 46(1):126-132. CHENG Chunlan, ZHOU Deyuan, YE Shan, et al. Experimental research on seismic behavior of composite concrete and steel plate shear walls with binding bars[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(1):126-132. (in Chinese)
[25] 闫晓京. 核电工程双钢板内嵌混凝土组合墙轴压性能研究[D].北京:中国地震局工程力学研究所, 2013. YAN Xiaojing. Axial Compression Performance of Steel-concrete-steel Sandwich Composite Wall in Nuclear Engineering[D].Beijing:Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese)
[26] 张友佳. 核电工程钢板混凝土结构抗震性能试验与计算分析[D].北京:中国地震局工程力学研究所, 2014. ZHANG Youjia. Experimental and Numerical Analysis Study on Seismic Performance of Steel Plate Reinforced Concrete Structure for Nuclear Power Plants[D].Beijing:Institute of Engineering Mechanics, China Earthquake Administration, 2014. (in Chinese)
[27] 聂建国, 朱力, 樊健生, 等.钢板剪力墙抗震性能试验研究[J].建筑结构学报, 2013, 34(1):61-69. NIE Jianguo, ZHU Li, FAN Jiansheng, et al. Experimental research on seismic behavior of steel plate shear walls[J]. Journal of Building Structures, 2013, 34(1):61-69. (in Chinese)
[28] 聂建国, 胡红松, 李盛勇, 等.方钢管混凝土暗柱内嵌钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1):52-60. NIE Jianguo, HU Hongsong, LI Shengyong, et al. Experimental study on seismic behavior of steel plate reinforced concrete composite shear walls with square CFST concealed columns[J]. Journal of Building Structures, 2013, 34(1):52-60. (in Chinese)
[29] 聂建国, 卜凡民, 樊健生. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报, 2011, 32(11):74-81. NIE Jianguo, BU Fanmin, FAN Jiansheng. Experimental research on seismic behavior of low shear-span ratio composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2011, 32(11):74-81. (in Chinese)
[30] 聂建国, 陶慕轩, 樊健生, 等.双钢板-混凝土组合剪力墙研究新进展[J].建筑结构学报, 2012, 41(12):52-60. NIE Jianguo, TAO Muxuan, FAN Jiansheng, et al. Research advances of composite shear walls with double steel plates and filled concrete[J]. Journal of Building Structures, 2012, 41(12):52-60. (in Chinese)
[31] 胡红松, 聂建国. 双钢板-混凝土组合剪力墙变形能力分析[J].建筑结构学报, 2013, 34(5):52-62. HU Hongsong, NIE Jianguo. Deformability analysis of composite shear walls with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(5):52-62. (in Chinese)
[32] 聂建国, 胡红松.外包钢板-混凝土组合连梁试验研究(Ⅰ):抗震性能[J].建筑结构学报, 2014, 35(5):1-9. NIE Jianguo, HU Hongsong. Experimental research on concrete filled steel plate composite coupling beams (I):seismic behavior[J]. Journal of Building Structures, 2014, 35(5):1-9. (in Chinese)
[33] 胡红松, 聂建国.外包钢板-混凝土组合连梁试验研究(Ⅱ):应力与内力分析[J].建筑结构学报, 2014, 35(5):10-16. HU Hongsong, NIE Jianguo. Experimental research on concrete filled steel plate composite coupling beams (Ⅱ):stress and internal force analyses[J]. Journal of Building Structures, 2014, 35(5):10-16. (in Chinese)
[34] Yan J B, Wang J Y, Liew J Y R, et al. Applications of ultra-lightweight cement composite in flat slabs and double skin composite structures[J]. Construction and Building Materials, 2016,111:774-796.
[35] Lin Y, Yan J, Cao Z, et al. Ultimate strength behaviour of S-UHPC-S and SCS sandwich beams under shear loads[J]. Journal of Constructional Steel Research, 2018, 149:195-206.
[36] Eurocode 4. Design of Composite Steel and Concrete Structures-Part 1.1:General Rules and Rules for Buildings[S]. BS EN 1994-1-1, Bruselles, 2004.
[37] ACI349-06. Code Requirements for Nuclear Safety-related Concrete Structures (ACI 49-06) and Commentary[S]. American Concrete Institute, 2006.
[38] Narayanan R, Roberts T M, Naji FJ. Design Guide for Steel-Concrete-Steel Sandwich Construction, Volume 1:General Principles and Rules for Basic Elements[S]. The Steel Construction Institute, Ascot, Berkshire, UK, 1994.
[39] AISC Steel Design Guide 32. Design of Modular Steel-plate Composite Walls for Safety-related Nuclear Facilities[S]. American Institute of Steel Construction, 2017.
[40] GB/T 51340-2018核电站钢板混凝土结构技术标准[S]. 北京:中华人民共和国住房和城乡建设部/国家市场监督管理总局, 2018.
[41] GB50017-2003 Code for Design of Steel Structures[S]. Ministry of Construction of the P.R.China, 2003.
[42] ANSI/AISC. AISC 360-10, Specification for Structural Steel Buildings[S]. Chicago:American National Standards Institute, 2010.
[43] Yan J B, Liew J Y R, Sohel K M A, et al. Push out tests on J-hook shear connectors in steel-concrete-steel sandwich structure[J]. Materials and Structures, 2014, 47(10):1693-1714.
[44] Yan J B, Liew J Y R, Zhang M H. Tensile resistance of J-hook connectors in SCS sandwich composite structure[J]. Journal of Constructional Steel Research, 2014, 100:146-162.
[45] Yan J B, Liew J Y R, Zhang M H, et al. Ultimate strength behaviour of steel-concrete-steel sandwich composite structures, Part 1:Experimental and analytical Study[J]. Steel and Composite Structure, An International Journal, 2014, 17(6):907-927.
[46] Yan J B. Finite element analysis on ultimate strength behaviour of steel-concrete-steel sandwich composite beam structures[J]. Materials and Structures, 2015, 48(6):1645-1667.
[47] Lin Y, Yan J, Wang Z, et al. Failure mechanism and failure patterns of SCS composite beams with steel-fiber-reinforced UHPC[J]. Engineering Structures, 2020, 211:110471.
[48] Lin Y, Yan J, Wang Y, et al. Shear failure mechanisms of SCS sandwich beams considering bond-slip between steel plates and concrete[J]. Engineering Structures, 2019, 181:458-475.
[49] Yan J B, Guan H N, Wang T. Numerical studies on steel-UHPC-steel sandwich beams with novel enhanced C-channels[J]. Journal of Constructional Steel Research, 2020, 170:106070.
[50] Foundoukos N, Chapman J. C. Finite element analysis of steel-concrete-steel sandwich beams[J]. Journal of Constructional Steel Research, 2008, 64(9):947-961.
[51] Yan J B, Liew J Y R, Qian X, et al. Ultimate strength behavior of curved steel-concrete-Steel sandwich composite beams[J]. Journal of Constructional Steel Research, 2015, 115:316-328.
[52] Yan J B, Xiong M X, Liew J Y R, et al. Numerical and parametric study of curved steel-concrete-steel sandwich composite beams under concentrated loading[J]. Materials and Structures, 2016, 49(10):3981-4001.
[53] Yan J B, Wang J Y, Liew J Y R, et al. Punching shear behavior of steel-concrete-steel sandwich composite plate under patch loads[J]. Journal of Constructional Steel Research, 2016, 121:50-64.
[54] Yan J B, Wang J Y, Liew J Y R, et al. Ultimate strength behaviour of steel-concrete-steel sandwich plate under concentrated loads[J]. Ocean Engineering, 2016, 118:41-57.
[55] Yan J B, Liew J Y R. Design and behavior of steel-concrete-steel sandwich plates subject to concentrated loads[J]. Composite Structures, 2016, 150:139-152.
[56] Yan J B, Wang X T, Wang T. Compressive behaviour of normal weight concrete confined by the steel faceplates in SCS sandwich wall[J]. Construction and Building Materials, 2018, 171:437-454.
[57] Yan J B, Liew J Y R, Zhang M H, et al. Punching shear resistance of steel-concrete-steel sandwich composite shell structure[J]. Engineering Structures, 2016, 117:470-485.
[58] Yan J B, Zhang W. Numerical analysis on steel-concrete-steel sandwich plates by damage plasticity model:From materials to structures[J]. Construction and Building Materials, 2017, 149:801-815.