[1]严加宝,张令心,林旭川,等.双钢板-混凝土组合防护结构受力机理研究综述[J].自然灾害学报,2020,29(06):001-12.[doi:10.13577/j.jnd.2020.0601]
 YAN Jiabao,ZHANG Lingxin,LIN Xuchuan,et al.Review on mechanisms of double skin composite protective structures[J].,2020,29(06):001-12.[doi:10.13577/j.jnd.2020.0601]
点击复制

双钢板-混凝土组合防护结构受力机理研究综述
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年06期
页码:
001-12
栏目:
出版日期:
2020-12-28

文章信息/Info

Title:
Review on mechanisms of double skin composite protective structures
作者:
严加宝1 张令心2 林旭川2 王涛2
1. 天津大学 滨海土木工程结构与安全教育部重点实验室, 天津 300350;
2. 中国地震局工程力学研究所地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080
Author(s):
YAN Jiabao1 ZHANG Lingxin2 LIN Xuchuan2 WANG Tao2
1. Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300350, China;
2. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
防护结构双钢板-混凝土组合结构受力机理连接件研究综述
Keywords:
protective structuredouble skin composite structuremechanismconnectionsresearch review
分类号:
TU391;X9
DOI:
10.13577/j.jnd.2020.0601
摘要:
双钢板-混凝土组合结构不仅具有省模板、少支模等施工便捷性,而且具有抗渗性好、变形能力强、抗冲击与抗爆性能突出等良好的力学性能,在核设施、近海工程设施等防护抗灾结构中具有良好应用前景。除了抵御极端荷载外,防护结构在常规荷载下的良好受力性能对其维持正常使用功能、减少日常事故风险以及避免次生灾害至关重要。本文介绍了双钢板-混凝土组合防护结构的工程应用与研究现状,着重总结了各类新型双钢板-混凝土组合结构构件与连接的受力机理与性能,并以近年相关理论分析、试验与数值模拟等研究为例进行详细说明。内容主要涉及双钢板-混凝土组合防护结构中剪力连接件受剪与受拉性能、平面及曲面双钢板-混凝土组合梁斜截面抗剪与正截面抗弯性能、双钢板-混凝土组合墙(板)面外局部荷载作用下冲切性能与墙体受压性能、双钢板-混凝土组合壳面外冲切性能。
Abstract:
Double skin composite structures (DSCS), possessing extensive advantages of saving formworks, reducing on-site casting works, excellent penetration resistance and deformation capacity, and excellent structural performances under impact and blast loads, exhibit wide potential applications as protective structures in buildings, nuclear facilities, and offshore structures. Besides extreme loads, good mechanical performance of the protective structures under various conventional loads are important for maintaining the daily function, reducing the risk of normal accidents and avoiding secondary disasters. This paper introduces the research developments on double skin composite structures. It especially summarized the innovations and working mechanisms on double skin composite (DSC) structural members, and introduces the research achievements on theory, tests, and numerical simulations as well as case studies. The extensive review in this paper includes shear and tensile behavior of connections in DSCSs, flexural bending and diagonal shear behavior of flat and curved DSC beams, punching shear behavior of DSCS under out-of-plane punching shear and compressive behavior of DSC walls, and punching shear behavior of DSC shells.

参考文献/References:

[1] 李忠献, 任其武, 师燕超, 等.重要建筑结构抗恐怖爆炸设计爆炸荷载取值探讨[J].建筑结构学报, 2016, 37(3):51-58. LI Zhongxian, REN Qiwu, SHI Yanchao, et al. Research on blast load value in design of important building structures against terrorist explosions[J]. Journal of Building Structures, 2016, 37(3):51-58. (in Chinese)
[2] Remennikov A, Gan E C J, Tuan Ngo, et al. The development and ballistic performance of protective steel-concrete composite barriers against hypervelocity impacts by explosively formed projectiles[J]. Composite Structures, 2019, 207:625-644.
[3] Liew J Y R, Sohel K M A, Koh C G. Impact tests on steel-concrete-steel sandwich beams with lightweight concrete core[J]. Engineering Structures, 2009, 31(9):2045-2059.
[4] Narayanan R, Wright H D, Francis R W, et al. Double skin composite construction for submerged tube tunnels[J]. Steel Constr Today, 1987, 1:185-189.
[5] Yan J B, Liew J Y R, Zhang M H, et al. Experimental and analytical study on ultimate strength behaviour of steel-concrete-steel sandwich composite beam structures[J].Mater. Struct., 2015, 48(5):1523-1544.
[6] Montague P. A simple composite construction for cylindrical shells subjected to external pressure[J]. J. Mech. Engng Sci., 1975, 17:105-113.
[7] Malek N, Machida A, Mutsuyoshi H, et al. Steel-concrete sandwich members without shear reinforcement[J]. Transactions of Japan Concrete Institute, 1993, 15(2):1279-1284.
[8] Xie M, Foundoukos N, Chapman J C. Experimental and numerical investigation on the shear behaviour of friction-welded bar-plate connections embedded in concrete[J]. J. Construct. Steel Research, 2004, 61:625-649.
[9] Liew J Y, Wang T Y, Sohel K M A. Separation Prevention Shear Connectors for Sandwich Composite Structures[P]. US Provisional Patent Application, No. 61/047, 130, 2008.
[10] Leekitwattanam, Boyd S W, Shenoi R A. Evaluation of the transverse shear stiffness of a steel bi-directional corrugated-strip-core sandwich beam[J]. J. Construct. Steel Research, 2011, 67:248-254.
[11] Ehlers S, Ostby E. Increased crashworthiness due to arctic conditions-The influence of sub-zero temperature[J]. Mar Struct 2012, 28:86-100.
[12] Takeuchi M, Narikawa M, Matsuo I, et al. Study on a concrete filled structure for nuclear power plants[J]. Nuclear Engineering and Design, 1998, 179(2):209-223.
[13] Ozaki M, Akita S, Oosugah, et al. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear[J]. Nucl Eng Des, 2004, 228(1-3):225-244.
[14] Choi B J, Han H S. An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading[J]. Steel and Composite Structures, 2009, 9(6):519-534.
[15] Varma AH, Malushte S, Sener K, et al. Steel-plate composite (SC) walls for safety related nuclear facilities:design for in-plane force and out-of-plane moments[C]//Nucl Eng and Des, 2014, 269(Special Issue on SMiRT-21 Conference):240-249.
[16] Zhang K, Varma AH, Malushte SR, et al. Effect of shear connectors on local buckling and composite action in steel concrete composite walls[J]. Nuclear Engineering and Design, 2014, 269:231-239.
[17] Varma A H, Zhang K, Malushte S R. Local buckling of SC composite walls at ambient and elevated temperature[C]//Transactions, SMiRT-22, Sanfrancisco, California, USA, Aug 18-23, 2013.
[18] Varma A H, Malushte S R, Sener K C. Steel-plate composite (SC) walls for safety related nuclear facilities:design for in-plane force and out-of-plane moments[J]. Nuclear Engineering and Design, 2014, 269:240-249.
[19] 曹万林, 惠存, 董宏英, 等.工字形截面内藏双钢板混凝土组合柱抗震试验[J]. 自然灾害学报, 2014, 23(2):85-93. CAO Wanlin, HUI Cui, DONG Hongying, et al. Experimental study on seismic behavior of I-section steel reinforced concrete columns with concealed double steel plates[J].Journal of Natural Disasters, 2014, 23(2):85-93. (in Chinese)
[20] 李洋, 谭平, 魏瑶, 等.具有面外变形空间的屈曲约束钢板剪力墙抗震性能试验研究[J]. 自然灾害学报, 2018, 27(1):61-70. LI Yang, TAN Ping, WEI Yao, et al. Experimental investigation on seismic behavior of buckling-restrained steel plate shear wall with out-of-plane deformation space[J]. Journal of Natural Disasters, 2018, 27(1):61-70. (in Chinese)
[21] 李晓虎, 李小军, 申丽婷, 等. 核岛结构双钢板混凝土组合剪力墙低周往复试验研究[J]. 北京工业大学学报, 2016, 42(10):1498-1508. LI Xiaohu, LI Xiaojun, SHEN Liting, et al. Experimental study of composite shear walls with double steel plates and filled concrete for a nuclear island structure under low cyclic loading[J]. Journal of Beijing University of Technology, 2016, 42(10):1498-1508. (in Chinese)
[22] 熊峰, 何涛, 周宁.核电站双钢板混凝土剪力墙抗剪强度研究[J]。湖南大学学报(自然科学版), 2015, 42(9):33-41. XIONG Feng, HE Tao, ZHOU Ning. Study on the shear strength of double steel plate composite shear wall in nuclear plant[J]. Journal of Hunan University (Natural Sciences), 2015, 42(9):33-41. (in Chinese)
[23] 刘阳冰, 杨庆年, 刘晶波, 等. 双钢板-混凝土剪力墙轴心受压性能试验研究[J]. 四川大学学报(工程科学版), 2016, 48(2):83-90. LIU Yangbing, YANG Qingnian, LIU Jingbo, et al. Experimental research on axial compressive behavior of shear wall with double steel plates and filled concrete[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(2):83-90. (in Chinese)
[24] 程春兰, 周德源, 叶珊, 等. 低剪跨比带约束拉杆双钢板-混凝土组合剪力墙抗震性能试验研究[J].东南大学学报(自然科学版), 2016, 46(1):126-132. CHENG Chunlan, ZHOU Deyuan, YE Shan, et al. Experimental research on seismic behavior of composite concrete and steel plate shear walls with binding bars[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(1):126-132. (in Chinese)
[25] 闫晓京. 核电工程双钢板内嵌混凝土组合墙轴压性能研究[D].北京:中国地震局工程力学研究所, 2013. YAN Xiaojing. Axial Compression Performance of Steel-concrete-steel Sandwich Composite Wall in Nuclear Engineering[D].Beijing:Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese)
[26] 张友佳. 核电工程钢板混凝土结构抗震性能试验与计算分析[D].北京:中国地震局工程力学研究所, 2014. ZHANG Youjia. Experimental and Numerical Analysis Study on Seismic Performance of Steel Plate Reinforced Concrete Structure for Nuclear Power Plants[D].Beijing:Institute of Engineering Mechanics, China Earthquake Administration, 2014. (in Chinese)
[27] 聂建国, 朱力, 樊健生, 等.钢板剪力墙抗震性能试验研究[J].建筑结构学报, 2013, 34(1):61-69. NIE Jianguo, ZHU Li, FAN Jiansheng, et al. Experimental research on seismic behavior of steel plate shear walls[J]. Journal of Building Structures, 2013, 34(1):61-69. (in Chinese)
[28] 聂建国, 胡红松, 李盛勇, 等.方钢管混凝土暗柱内嵌钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1):52-60. NIE Jianguo, HU Hongsong, LI Shengyong, et al. Experimental study on seismic behavior of steel plate reinforced concrete composite shear walls with square CFST concealed columns[J]. Journal of Building Structures, 2013, 34(1):52-60. (in Chinese)
[29] 聂建国, 卜凡民, 樊健生. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报, 2011, 32(11):74-81. NIE Jianguo, BU Fanmin, FAN Jiansheng. Experimental research on seismic behavior of low shear-span ratio composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2011, 32(11):74-81. (in Chinese)
[30] 聂建国, 陶慕轩, 樊健生, 等.双钢板-混凝土组合剪力墙研究新进展[J].建筑结构学报, 2012, 41(12):52-60. NIE Jianguo, TAO Muxuan, FAN Jiansheng, et al. Research advances of composite shear walls with double steel plates and filled concrete[J]. Journal of Building Structures, 2012, 41(12):52-60. (in Chinese)
[31] 胡红松, 聂建国. 双钢板-混凝土组合剪力墙变形能力分析[J].建筑结构学报, 2013, 34(5):52-62. HU Hongsong, NIE Jianguo. Deformability analysis of composite shear walls with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(5):52-62. (in Chinese)
[32] 聂建国, 胡红松.外包钢板-混凝土组合连梁试验研究(Ⅰ):抗震性能[J].建筑结构学报, 2014, 35(5):1-9. NIE Jianguo, HU Hongsong. Experimental research on concrete filled steel plate composite coupling beams (I):seismic behavior[J]. Journal of Building Structures, 2014, 35(5):1-9. (in Chinese)
[33] 胡红松, 聂建国.外包钢板-混凝土组合连梁试验研究(Ⅱ):应力与内力分析[J].建筑结构学报, 2014, 35(5):10-16. HU Hongsong, NIE Jianguo. Experimental research on concrete filled steel plate composite coupling beams (Ⅱ):stress and internal force analyses[J]. Journal of Building Structures, 2014, 35(5):10-16. (in Chinese)
[34] Yan J B, Wang J Y, Liew J Y R, et al. Applications of ultra-lightweight cement composite in flat slabs and double skin composite structures[J]. Construction and Building Materials, 2016,111:774-796.
[35] Lin Y, Yan J, Cao Z, et al. Ultimate strength behaviour of S-UHPC-S and SCS sandwich beams under shear loads[J]. Journal of Constructional Steel Research, 2018, 149:195-206.
[36] Eurocode 4. Design of Composite Steel and Concrete Structures-Part 1.1:General Rules and Rules for Buildings[S]. BS EN 1994-1-1, Bruselles, 2004.
[37] ACI349-06. Code Requirements for Nuclear Safety-related Concrete Structures (ACI 49-06) and Commentary[S]. American Concrete Institute, 2006.
[38] Narayanan R, Roberts T M, Naji FJ. Design Guide for Steel-Concrete-Steel Sandwich Construction, Volume 1:General Principles and Rules for Basic Elements[S]. The Steel Construction Institute, Ascot, Berkshire, UK, 1994.
[39] AISC Steel Design Guide 32. Design of Modular Steel-plate Composite Walls for Safety-related Nuclear Facilities[S]. American Institute of Steel Construction, 2017.
[40] GB/T 51340-2018核电站钢板混凝土结构技术标准[S]. 北京:中华人民共和国住房和城乡建设部/国家市场监督管理总局, 2018.
[41] GB50017-2003 Code for Design of Steel Structures[S]. Ministry of Construction of the P.R.China, 2003.
[42] ANSI/AISC. AISC 360-10, Specification for Structural Steel Buildings[S]. Chicago:American National Standards Institute, 2010.
[43] Yan J B, Liew J Y R, Sohel K M A, et al. Push out tests on J-hook shear connectors in steel-concrete-steel sandwich structure[J]. Materials and Structures, 2014, 47(10):1693-1714.
[44] Yan J B, Liew J Y R, Zhang M H. Tensile resistance of J-hook connectors in SCS sandwich composite structure[J]. Journal of Constructional Steel Research, 2014, 100:146-162.
[45] Yan J B, Liew J Y R, Zhang M H, et al. Ultimate strength behaviour of steel-concrete-steel sandwich composite structures, Part 1:Experimental and analytical Study[J]. Steel and Composite Structure, An International Journal, 2014, 17(6):907-927.
[46] Yan J B. Finite element analysis on ultimate strength behaviour of steel-concrete-steel sandwich composite beam structures[J]. Materials and Structures, 2015, 48(6):1645-1667.
[47] Lin Y, Yan J, Wang Z, et al. Failure mechanism and failure patterns of SCS composite beams with steel-fiber-reinforced UHPC[J]. Engineering Structures, 2020, 211:110471.
[48] Lin Y, Yan J, Wang Y, et al. Shear failure mechanisms of SCS sandwich beams considering bond-slip between steel plates and concrete[J]. Engineering Structures, 2019, 181:458-475.
[49] Yan J B, Guan H N, Wang T. Numerical studies on steel-UHPC-steel sandwich beams with novel enhanced C-channels[J]. Journal of Constructional Steel Research, 2020, 170:106070.
[50] Foundoukos N, Chapman J. C. Finite element analysis of steel-concrete-steel sandwich beams[J]. Journal of Constructional Steel Research, 2008, 64(9):947-961.
[51] Yan J B, Liew J Y R, Qian X, et al. Ultimate strength behavior of curved steel-concrete-Steel sandwich composite beams[J]. Journal of Constructional Steel Research, 2015, 115:316-328.
[52] Yan J B, Xiong M X, Liew J Y R, et al. Numerical and parametric study of curved steel-concrete-steel sandwich composite beams under concentrated loading[J]. Materials and Structures, 2016, 49(10):3981-4001.
[53] Yan J B, Wang J Y, Liew J Y R, et al. Punching shear behavior of steel-concrete-steel sandwich composite plate under patch loads[J]. Journal of Constructional Steel Research, 2016, 121:50-64.
[54] Yan J B, Wang J Y, Liew J Y R, et al. Ultimate strength behaviour of steel-concrete-steel sandwich plate under concentrated loads[J]. Ocean Engineering, 2016, 118:41-57.
[55] Yan J B, Liew J Y R. Design and behavior of steel-concrete-steel sandwich plates subject to concentrated loads[J]. Composite Structures, 2016, 150:139-152.
[56] Yan J B, Wang X T, Wang T. Compressive behaviour of normal weight concrete confined by the steel faceplates in SCS sandwich wall[J]. Construction and Building Materials, 2018, 171:437-454.
[57] Yan J B, Liew J Y R, Zhang M H, et al. Punching shear resistance of steel-concrete-steel sandwich composite shell structure[J]. Engineering Structures, 2016, 117:470-485.
[58] Yan J B, Zhang W. Numerical analysis on steel-concrete-steel sandwich plates by damage plasticity model:From materials to structures[J]. Construction and Building Materials, 2017, 149:801-815.

相似文献/References:

[1]何思明,吴永,沈均.泥石流大块石冲击力的简化计算[J].自然灾害学报,2009,18(05):051.
 HE Si-ming,WU Yong,SHEN Jun.Simplified calculation of impact force of massive stone in debris flow[J].,2009,18(06):051.

备注/Memo

备注/Memo:
收稿日期:2020-05-14;改回日期:2020-08-22。
基金项目:国家自然科学基金项目(51608358,U1939210,51678542)
作者简介:严加宝(1982-),男,副教授,博士,主要从事钢-混凝土组合结构与新型结构研究.E-mail:yanj@tju.edu.cn
通讯作者:林旭川(1984-),男,研究员,博士,主要从事区域灾害仿真与钢结构抗震减震研究.E-mail:linxuchuan@iem.ac.cn
更新日期/Last Update: 1900-01-01